Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modulation of Graphene Dirac Plasmons: A First-Principles Study

LI Pengfei HAN Lijun ZHANG Lin HUI Ningju

Citation:

Modulation of Graphene Dirac Plasmons: A First-Principles Study

LI Pengfei, HAN Lijun, ZHANG Lin, HUI Ningju
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Graphene Dirac plasmons, which are collective oscillations of charge carriers behaving as massless Dirac fermions, have emerged as a transformative platform for nanophotonics due to their exceptional capability for deep subwavelength light confinement in the infrared to terahertz spectral regions and their unique dynamic tunability. While external controls such as electrostatic doping, mechanical strain, and substrate engineering are empirically known to modulate plasmonic responses, a comprehensive and quantitative theoretical framework from first principles is essential to decipher the distinct effciency and fundamental mechanisms of each tuning strategy. To address this, we present a systematic first-principles investigation into three primary modulation pathways-carrier density, biaxial strain, and substrate integration-using linear-response time-dependent density functional theory within the random-phase approximation (LR-TDDFT-RPA) as implemented in the computational code ABACUS. A truncated Coulomb potential was incorporated to accurately model the isolated two-dimensional system, while structural and electronic properties were computed using the PBE functional with SG15 norm-conserving pseudopoten- tials and van der Waals corrections for heterostructures. Our findings reveal that modulating carrier concentration shifts the plasmon dispersion following the characteristic ω∝ n1/4 scaling, enabling a wide tuning range from 0.45 eV to 1.38 eV at the Landau damping threshold-a 207% change for carrier densities from 0.005 to 0.1 electrons per unit cell, albeit with diminishing effciency at higher concentrations due to the sublinear nature of the scaling law. Biaxial strain linearly alters the plasmon energy by modifying the Fermi velocity (vF ) near the Dirac point, yielding a 30.4% tuning range (0.78-1.12 eV) under ±10% strain. Introducing an hBN substrate induces a small band gap (∼ 43 meV) and causes a general redshift in plasmon energy due to band renormalization, while remarkably preserving the linear straintuning capability with a 30.1% energy range (0.72-1.03 eV) in the heterostructure, demonstrating robust compatibility between strain engineering and substrate integration. These results quantitatively elucidate the distinct physical mechanisms-Fermi level shifting, Fermi velocity modification, and substrate-induced symmetry breaking and hybridization-underpinning each strategy, thereby providing a solid theoretical foundation for the design of dynamically tunable optoelectronic devices based on graphene and its van der Waals heterostructures.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D e, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132

    [4]

    Yang X X, Kong X T, Dai Q 2018 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2018 64 106801]

    [5]

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 73 157802 (in Chinese) [杨肖杰,许辉,徐海烨,李铭,于鸿飞,成昱轩,侯海良,陈智全 2024 67 157802]

    [6]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [7]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369

    [8]

    Fei Z, Rodin A, Andreev G O, Bao W Z, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [9]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Javier García de Abajo F, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [10]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421

    [11]

    Basov D N, Fogler M M, García de Abajo F J 2016 Science 354 aag1992

    [12]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165

    [13]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [14]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [15]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187

    [16]

    Zhang H Y, Fan X D, Wang D L, Zhang D B, Li X G, Zeng C G 2022 Phys. Rev. Lett. 129 237402

    [17]

    Zhao W Y, Wang S X, Chen S D, Zhang Z C, Kenji W, Takashi T, Alex Z, Wang F 2023 Nature 614 688

    [18]

    Li P F, Ren X G, He L X 2017 Phys. Rev. B 96 165417

    [19]

    Ju L, Geng B S, Jason H, Caglar G, Michael M, Hao Z, A B H, Liang X, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [20]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394

    [21]

    Ni G X, Wang L, Goldflam M, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Neto A H C, Hone J, Fogler M M, Basov D N 2016 Nat. Photon. 10 244

    [22]

    Chen M H, Guo G C, He L X 2010 J. Phys. Condens. Mat. 22 445501

    [23]

    Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C, He L X 2016 Comp. Mater. Sci. 112 503

    [24]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Wu Y Y, Li G L, Camden J P 2017 Chem. Rev. 118 2994

    [27]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [28]

    Silkin V M, Chulkov E V, Echenique P M 2004 Phys. Rev. Lett. 93 176801

    [29]

    Yuan Z, Gao S W 2009 Comput. Phys. Commun. 180 466

    [30]

    Mowbray D J 2014 Phys. Status Solidi B 251 2509

    [31]

    Li P F, Shi R, Lin P Z, Ren X G 2023 Phys. Rev. B 107 035433

    [32]

    Li P F, Hui N J 2025 Vacuum 240 114424

    [33]

    Adler S L 1962 Phys. Rev. 126 413

    [34]

    Wiser N 1963 Phys. Rev. 129 62

    [35]

    Petersilka M, Gossmann U J, Gross E K U 1996 Phys. Rev. Lett. 76 1212

    [36]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119

    [37]

    Antonio P, Gennaro C 2014 Nanoscale 6 10927

    [38]

    Pisarra M, Sindona A, Riccardi P, Silkin V M, Pitarke J M 2014 New J. Phys. 16 083003

    [39]

    Pines D 1956 Can. J. Phys. 34 1379

    [40]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

    [41]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [43]

    Marchiani D, Tonelli A, Mariani C, Frisenda R, Avila J, Dudin P, Jeong S, Ito Y, Magnani F S, Biagi R, et al. 2022 Nano Lett. 23 170

    [44]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [45]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [46]

    Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N 2009 Nat. Nanotechnol. 4 562

    [47]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801

    [48]

    Yasumasa H, Keita K 2012 Phys. Rev. B 86 165430

    [49]

    Wang L J, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147

    [50]

    Drogowska-Horna K A, Mirza I, Rodriguez A, Kovaříček P, Sládek J, Derrien T J Y, Gedvilas M, Račiukaitis G, Frank O, Bulgakova N M, Kalbáč M 2020 Nano Res. 13 2332

    [51]

    Lyu B S, Chen J J, Wang S, Lou S, Shen P Y, Xie J X, Qiu L, Mitchell I, Li C, Hu C, Zhou X L, Watanabe K, Taniguchi T, Wang X Q, Jia J F, Liang Q, Chen G, Li T X, Wang S Y, Ouyang W G, Hod O, Ding F, Urbakh M, Shi Z W 2024 Nature 628 758

    [52]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, et al. 2010 Nat. Nanotechnol. 5 722

    [53]

    Cassabois G, Valvin P, Gil B 2016 Nat. Photon. 10 262

    [54]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404

    [55]

    Luo M, Zhou Y, Cheng T T, Meng Y X, Wang Y J, Xian J C, Qin J Y, Yu C H 2024 Acta Photon. Sin. 53 0753307 (in Chinese) [罗曼,周杨,成田恬,孟雨欣,王奕锦,鲜佳赤,秦嘉怡,余晨辉 2024 光子学报 53 0753307]

    [56]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [57]

    Grimme S 2006 J. Comput. Chem. 27 1787

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20240489
    [2] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, doi: 10.7498/aps.73.20240992
    [3] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, doi: 10.7498/aps.72.20221630
    [4] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, doi: 10.7498/aps.72.20230736
    [5] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20211631
    [6] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, doi: 10.7498/aps.71.20211796
    [7] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.70.20211631
    [8] Ding Qing-Song, Luo Chao-Bo, Peng Xiang-Yang, Shi Xi-Zhi, He Chao-Yu, Zhong Jian-Xin. First principles study of distributions of Si atoms and structures of siligraphene g-SiC7. Acta Physica Sinica, doi: 10.7498/aps.70.20210621
    [9] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, doi: 10.7498/aps.70.20201619
    [10] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, doi: 10.7498/aps.69.20191645
    [11] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.68.20190903
    [12] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, doi: 10.7498/aps.68.20190523
    [13] Liu Gui-Li, Yang Zhong-Hua. First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene. Acta Physica Sinica, doi: 10.7498/aps.67.20172491
    [14] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, doi: 10.7498/aps.67.20180867
    [15] Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong. First-principle study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, doi: 10.7498/aps.66.107102
    [16] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, doi: 10.7498/aps.66.057301
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, doi: 10.7498/aps.64.108402
    [18] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, doi: 10.7498/aps.63.154601
    [19] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, doi: 10.7498/aps.60.036104
    [20] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, doi: 10.7498/aps.59.7880
Metrics
  • Abstract views:  25
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  17 September 2025
  • /

    返回文章
    返回
    Baidu
    map