Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A frequency-reconfigurable ultra-wideband 1-bit phase-shifting metasurface

LIAO Jiawei YANG Huanhuan LI Tong JI Kefeng ZHANG Zhiyun WU Tianhao ZOU Jing SUN Daifei

Citation:

A frequency-reconfigurable ultra-wideband 1-bit phase-shifting metasurface

LIAO Jiawei, YANG Huanhuan, LI Tong, JI Kefeng, ZHANG Zhiyun, WU Tianhao, ZOU Jing, SUN Daifei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, a design method is presented for frequency-phase composite reconfigurable metasurfaces. N PIN diodes are introduced into the metasurface unit. The on-off states of these PIN diodes regulate the resonance characteristics of the unit, constructing 2N switchable reflection phase states. After optimizing structural parameters, these reflection phase curves show that there is a 180° phase difference between different frequency bands. By regulating frequency and phase regulation, the operational bandwidth of reconfigurable phase-shifting metasurface is effectively expanded. Based on this method, an ultra-wideband 1-bit phase-shifting metasurface unit is designed. Its 1-bit phase regulation band covers 5.4—13.0 GHz, with a relative bandwidth of 82.6%. Lumped capacitors are adopted and their positions are optimized to precisely adjust current distribution, enabling low-loss performance of the unit. The unit with a thickness of only 0.09 λ features low profile, low cost, and low loss. A 16 × 16 unit array is further constructed. Through coding regulation, the metasurface can generate scattering-controllable beams and orbital angular momentum vortex waves. Experimental results show that the metasurface can achieve a radar cross section reduction of over 10 dB in the ultra-wideband range, demonstrating dynamic beam steering capability and high-efficiency low-scattering performance. This design offers new insights into applying reconfigurable metasurfaces to broadband communication, radar stealth, and intelligent electromagnetic environment regulation.
  • 图 1  矩形贴片超表面单元 (a) 单元侧视图; (b) 单元不同金属贴片尺寸的反射相位

    Figure 1.  Metasurface element with rectangular patch: (a) Isometric view; (b) reflection phases of the element with different patch sizes.

    图 2  超表面基本单元演变过程 (a) 1比特单元; (b) 频率可重构1比特单元; (c) 低损耗频率可重构1比特单元

    Figure 2.  Design process of the metasurface element: (a) 1 bit element; (b) frequency-reconfigurable 1 bit element; (c) low-loss and frequency-reconfigurable 1 bit element.

    图 3  单元结构示意图 (a) 单元透视图; (b) 单元俯视图; (c) 单元仰视图

    Figure 3.  Structure of the metasurface element: (a) Isometric view; (b) top view; (c) bottom view.

    图 4  偏置线对单元反射性能的影响 (a) 幅度; (b) 相位

    Figure 4.  Influence of biasing circuit on reflection performance: (a) Reflection amplitude; (b) reflection phase.

    图 5  10.5 GHz时单元反射幅度分析 (a) 不含电容单元的表面电流分布; (b) 不含电容单元的反射幅度; (c) 含电容单元的表面电流分布; (d) 含电容单元的反射幅度; (e) 电容位置变化时的表面电流分布; (f) 电容位置变化时的反射幅度

    Figure 5.  Reflection amplitude Analysis of the element at 10.5 GHz: (a) Surface current distribution and (b) reflection amplitude of the element without capacitors; (c) surface current distribution and (d) reflection amplitude of the element with capacitors; (e) surface current distribution and (f) reflection amplitude of the element with different capacitors locations.

    图 6  单元反射性能曲线 (a) “11”和“10”状态; (b) “00”和10”状态; (c) “00”和01”状态; (d) “11”和“01”状态

    Figure 6.  Reflection characteristic of the element: (a) States of “11” and “10”; (b) states of “00” and “10”; (c) states of “00” and “01”; (d) states of “11” and “01”.

    图 7  超表面在9 GHz时不同的相位编码排布及散射方向图 (a) 单波束; (b) 双波束; (c) 三波束; (d) 漫散射

    Figure 7.  Different scattering patterns of the metasurface at 9 GHz: (a) Single beam; (b) double beam; (c) triple beam; (d) diffuse scattering.

    图 8  散射方向图分析与单站RCS对比 (a) 散射方向图; (b) RCS对比

    Figure 8.  Scattering pattern and monostatic RCS comparison: (a) Scattering pattern; (b) RCS.

    图 9  超表面在棋盘相位编码排布时的散射方向图 (a) 6.9 GHz; (b) 9.0 GHz; (c) 11.2 GHz; (d) 12.2 GHz

    Figure 9.  The scattering pattern of the metasurface with checkerboard coding configuration: (a) 6.9 GHz; (b) 9.0 GHz; (c) 11.2 GHz; (d) 12.2 GHz.

    图 10  超表面在不同频率时产生OAM涡旋波及其相位编码排布 (a) 6.9 GHz, θ = 15°; (b) 9.0 GHz, θ = 15°; (c) 11.2 GHz, θ = 15°; (d) 12.2 GHz, θ = 15°; (e) 6.9 GHz, θ = 30°; (f) 9.0 GHz, θ = 30°; (g) 11.2 GHz, θ = 30°; (h) 12.2 GHz, θ = 30°

    Figure 10.  OAM vortex waves generated by the metasurface at different frequencies: (a) 6.9 GHz, θ = 15°; (b) 9.0 GHz, θ = 15°; (c) 11.2 GHz, θ = 15°; (d) 12.2 GHz, θ = 15°; (e) 6.9 GHz, θ = 30°; (b) 9.0 GHz, θ = 30°; (c) 11.2 GHz, θ = 30°; (d) 12.2 GHz, θ = 30°.

    图 11  超表面在6.9 GHz处OAM散射波束俯仰角θ = 30°时的相位分布及模式纯度分析 (a) l = 1的相位分布; (b) l = –1的相位分布; (c) l = 1的模式纯度

    Figure 11.  Phase and mode purity analysis of OAM vortex waves at 6.9 GHz (θ = 30°): (a) Phase distribution for l = 1; (b) phase distribution for l = –1; (c) mode purity for l = 1.

    图 12  同尺寸金属板与超表面在各频带内产生不同OAM涡旋波时的RCS (a) 波束θ = 15°; (b) 波束θ = 30°

    Figure 12.  Monostatic RCS of the metal plate and the metasurface in the state of generating different OAM vortex waves: (a) θ = 15°; (b) θ = 30°.

    图 13  8 × 8超表面样件及测试 (a) 样件正面; (b) 样件背面; (c) 微波暗室测试示意图

    Figure 13.  Picture and test of the metasurface with 8 × 8 elements: (a) Top view; (b) back view; (c) test in the anechoic chamber.

    图 14  仿真与测试的超表面RCS减缩效果 (a) 棋盘相位编码排布; (b) 左右对称相位编码排布

    Figure 14.  Simulated and measured monostatic RCS reduction of the metasurface: (a) Chessboard coding configuration; (b) symmetrtic coding configuration.

    图 15  仿真与测试的超表面yoz面散射方向图 (a) 单波束; (b) 双波束; (c) 三波束

    Figure 15.  Simulated and measured scattering pattern of the metasurface at yoz plane: (a) Single beam; (b) double beam; (c) triple beam.

    表 1  本文设计的可重构超表面单元与已有文献比较

    Table 1.  Comparison of in this work and metasurface cells in previous work.

    文献 调控
    类型
    调控频
    带/GHz
    相对带
    宽/%
    射频介
    质层数
    厚度 单元大小
    [25] 相位 12.9—16.5 23.8 2 0.12λ 0.47λ×0.47λ
    [26] 相位 6.75—11.25 50 1 0.066λ 0.30λ×0.30λ
    [27] 相位 7.3—13.9 62.3 2 0.14λ 0.35λ×0.35λ
    [28] 相位 5.2—9.4 57.5 2 0.13λ 0.44λ×0.44λ
    [29] 相位 2.75—6.0 74.3 2 0.17λ 0.27λ×0.27λ
    本文 相位+
    频率
    5.4—13.0 82.6 1 0.09λ 0.38λ×0.38λ
    DownLoad: CSV
    Baidu
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. -Rev. Sec. Phys. Lett. 634 1

    [3]

    Chen Q, Yang S L, Bai J J, Fu Y Q 2017 IEEE Trans. Antennas Propag. 65 4897Google Scholar

    [4]

    Xing Z Y, Yang F, Yang P, Yang J H 2022 IEEE Antennas Wirel. Propag. Lett. 21 1659Google Scholar

    [5]

    Li B, Liu X B, Shi H Y, Yang C, Chen Q, Zhang A X 2018 IEEE Access 6 78839Google Scholar

    [6]

    Huang C X, Zhang J J, Cheng Q, Cui T J 2021 Adv. Funct. Mater. 31 2103379Google Scholar

    [7]

    Xu J, Yang K X, Tian S, Zhao J P 2024 IEEE Antennas Wirel. Propag. Lett. 23 4658Google Scholar

    [8]

    Zhao S H, Zhang S, Xue H, Li Y C, Zhang K Y, Liu H X, Li L 2024 IEEE Antennas Wirel. Propag. Lett. 23 985Google Scholar

    [9]

    Li Z H, Li S J, He C Y, Wu Y H, Hu L Q, Zhang Z Y, Li T, Yang H H 2024 Adv. Phys. Res. 6 2400176

    [10]

    Xu P, Tian H W, Jiang W X, Chen Z Z, Cao T, Qiu C W, Cui T J 2021 Adv. Opt. Mater. 9 2100159Google Scholar

    [11]

    Yang H H, Li T, Liao J W, Gao K, Li Q, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 4069Google Scholar

    [12]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [13]

    Yang H H, Li T, Jidi L, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [14]

    Li T, Yang H H, Li Q, Zhang C, Han J F, Cong L L, Cao X Y, Gao J 2019 Opt. Mater. Express 9 1161Google Scholar

    [15]

    Yang H H, Li T, Gao K, Guo Z X, Li Q, Li S J, Cao X Y 2024 Microwave Opt. Technol. Lett. 66 33965

    [16]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T, Liu X B, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 2046Google Scholar

    [17]

    Zhang Z Y, Cao X Y, Yang H H, Li T, Li S J, Ji K F 2023 J. Phys. D: Appl. Phys. 56 015103Google Scholar

    [18]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl. 3 e218Google Scholar

    [19]

    Pitilakis A, Seckel M, Tasolamprou A C, Liu F, Deltsidis A, Manessis D, Ostmann A, Kantartzis N V, Liaskos C, Soukoulis C M, Tretyakov S A, Kafesaki M, Tsilipakos O 2022 Phys. Rev. Appl. 17 064060Google Scholar

    [20]

    Yin T, Ren J, Chen Y J, Xu K D, Yin Y Z 2024 IEEE Trans. Antennas Propag. 72 6789Google Scholar

    [21]

    Li W H, Qiu T S, Wang J F, Zheng L, Jing Y, Jia Y X, Wang H, Han Y J, Qu S B 2021 IEEE Trans. Antennas Propag. 69 296Google Scholar

    [22]

    Wang P, Wang Y, Yan Z M, Zhou H C 2022 Chin. Phys. B 31 124201Google Scholar

    [23]

    Yu H C, Cao X Y, Gao J, Yang H H, Jidi L, Han J F, Li T 2018 Opt. Mater. Express 8 3373Google Scholar

    [24]

    Wang H L, Zhang Y K, Cheng Y T, Zhang T Y, Zheng S, Cui T J, Ma H F 2025 Laser Photonics Rev. 19 202500057

    [25]

    Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572Google Scholar

    [26]

    Cao W W, Zhang J W, Dai J Y, Wu L J, Yang H Q, Zhang Z, Li H D, Cheng Q 2025 Chin. Opt. Lett. 23 023603Google Scholar

    [27]

    Zhou S G, Zhao G, Xu H, Luo C W, Sun J Q, Chen G T, Jiao Y C 2022 IEEE Antennas Wirel. Propag. Lett. 21 566Google Scholar

    [28]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Cong L L, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar

    [29]

    卢颖娟, 程强, 王思然, 李会东, 戴俊彦, 张珍, 罗将 2025 光学学报 2 0401001

    Lu Y J, Cheng Q, Wang S R, Li H D, Dai J Y, Zhang Z, Luo J 2025 Acta Opt. Sin. 2 0401001

    [30]

    Li P, Yu H, Su J X, Song L W, Guo Q X, Li Z R 2023 IEEE Trans. Antennas Propag. 71 621Google Scholar

    [31]

    Shi H Y, Liu R, Zhang Z Y, Chen X M, Wang L Y, Yi J J, Liu H W, Zhang A X 2024 IEEE Antennas Wirel. Propag. Lett. 23 4613Google Scholar

    [32]

    Lan C W, Gao Y T, Gao Z H, Wang H Y, Bi K, Lei M, Zhao G N 2025 Chin. Phys. Lett. 42 056303Google Scholar

    [33]

    Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Appl. Mater. Interfaces 16 65635Google Scholar

    [34]

    Zheng Y J, Chen Q, Ding L, Yuan F, Fu Y Q 2023 J. Syst. Eng. Electron. 34 1473Google Scholar

    [35]

    Li Y X, Zhu R C, Sui S, Cui Y N, Jia Y X, Han Y J, Fu X M, Feng C Q, Qu S B, Wang J F 2025 Nanophotonics 14 959Google Scholar

    [36]

    Guo Q X, Hao F S, Qu M J, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 1241Google Scholar

    [37]

    Chen Q, Chen Y, Yuan F, Bai J J, Zheng Y J, Fu Y Q 2023 Chin. J. Radio Sci. 38 989

  • [1] WU Tianhao, YANG Huanhuan, LI Tong, JI Kefeng, ZHANG Zhiyun, LIAO Jiawei, ZOU Jing. Dual-polarized Low-RCS metasurface antenna based on amplitude-phase modulation. Acta Physica Sinica, doi: 10.7498/aps.74.20250838
    [2] YANG Guo, SHI Hongqiang, LI Xiaocong, XIAO Ruqi, QI Shishan, WU Wen. Millimeter-wave frequency-reconfigurable filtering antenna with high frequency turning ratio. Acta Physica Sinica, doi: 10.7498/aps.74.20241494
    [3] Li Tong, Yang Huan-Huan, Li Qi, Liao Jia-Wei, Gao Kun, Ji Ke-Feng, Cao Xiang-Yu. Low-RCS electromagnetic metasurface antenna based on shared-aperture technique. Acta Physica Sinica, doi: 10.7498/aps.73.20240142
    [4] Wang Dong-Jun, Sun Zi-Han, Zhang Yuan, Tang Li, Yan Li-Ping. Ultra-wideband thin frequency-selective surface absorber against sheet resistance fluctuation. Acta Physica Sinica, doi: 10.7498/aps.73.20231365
    [5] Feng Kui-Sheng, Li Na, Li Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, doi: 10.7498/aps.71.20211254
    [6] Feng Kui-Sheng, Li Na, Yang Huan-Huan. A novel low-RCS antenna array based on integration of electromagnetic metasurface and conventional antenna. Acta Physica Sinica, doi: 10.7498/aps.70.20210746
    [7] Hao Biao, Yang Bin-Feng, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Li Tong. A coding metasurface antenna array with low radar cross section. Acta Physica Sinica, doi: 10.7498/aps.69.20200978
    [8] Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong. An ultrawideband linear-to-circular polarization converter based on multiphysics regulation. Acta Physica Sinica, doi: 10.7498/aps.68.20181615
    [9] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, doi: 10.7498/aps.68.20190267
    [10] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, doi: 10.7498/aps.66.064203
    [11] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang, Zhao Yi, Liu Hong-Xi. A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band. Acta Physica Sinica, doi: 10.7498/aps.64.024219
    [12] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, doi: 10.7498/aps.64.178101
    [13] Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong. Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Acta Physica Sinica, doi: 10.7498/aps.63.194102
    [14] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, doi: 10.7498/aps.63.224102
    [15] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, doi: 10.7498/aps.62.237801
    [16] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.62.244202
    [17] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, doi: 10.7498/aps.62.064209
    [18] Gong Yun-Rui, He Di, He Chen. Investigation of blind detection mechanism for chaotic UWB system based on generalized negentrogy. Acta Physica Sinica, doi: 10.7498/aps.61.120502
    [19] Yang Rui, Xie Yong-Jun, Hu Hai-Peng, Wang Rui, Man Ming-Yuan, Wu Zhao-Hai. Ultra wideband planner inverted-F antenna with metamaterials loading. Acta Physica Sinica, doi: 10.7498/aps.59.3173
    [20] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, doi: 10.7498/aps.56.224
Metrics
  • Abstract views:  370
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2025
  • Accepted Date:  08 July 2025
  • Available Online:  24 July 2025
  • /

    返回文章
    返回
    Baidu
    map