Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-polarized low-RCS metasurface antenna based on amplitude-phase modulation

WU Tianhao YANG Huanhuan LI Tong JI Kefeng ZHANG Zhiyun LIAO Jiawei ZOU Jing

Citation:

Dual-polarized low-RCS metasurface antenna based on amplitude-phase modulation

WU Tianhao, YANG Huanhuan, LI Tong, JI Kefeng, ZHANG Zhiyun, LIAO Jiawei, ZOU Jing
cstr: 32037.14.aps.74.20250838
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To address the challenges of the complex design process and long optimization time for antenna radar cross section (RCS) reduction, this paper adopts the low-RCS antenna design concept of “first scattering then radiation” and implements dual-polarized RCS reduction of the antenna based on the hybrid mechanism. A dual-polarized low-scattering metasurface antenna is proposed, which overcomes the drawbacks of traditional low-RCS antenna design methods. Firstly, a dual-polarized low-RCS metasurface antenna is designed based on the amplitude and phase control characteristics of the metasurface, achieving independent control of the reflected beams for different polarized incident waves. Secondly, drawing on the radiation structure of traditional patch antennas, a local adjustment is made to the metasurface based on the low RCS metasurface. The antenna radiation is achieved through coaxial feed excitation. Finally, combined with the current distribution adjustment of the radiation structure, the antenna radiation performance is rapidly optimized.Through simulation and experimental verification, the proposed antenna not only has good radiation performance but also can achieve the reduction of dual-polarized RCS reduction inside and outside the frequency band. Compared with the traditional low-RCS antenna design methods, the reverse design concept of “first scattering then radiation” adopted in this work and the new method of reducing the dual-polarized RCS reduction of the antenna based on a hybrid mechanism effectively resolve the contradiction between radiation and low scattering caused by the compact structure of the metasurface antenna, greatly simplifying the design process of the low-scattering metasurface antenna. The antenna adopts a single-layer dielectric design to achieve RCS reduction, and has the characteristics of simple structure, compactness, and low profile.
      Corresponding author: YANG Huanhuan, jianye8901@126.com ; LI Tong, tongli8811@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62371466, 62401618, 62171460) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2024JC-ZDXM-39, 2025JC-YBMS-708, 20220104, 2020022).
    [1]

    Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018 Nat. Commun. 9 4334Google Scholar

    [2]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [3]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar

    [4]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. 70 76

    [5]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T 2024 IEEE Antennas Wireless Propag. Lett. 23 2046Google Scholar

    [6]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microw. Antennas Propag. 12 1793Google Scholar

    [7]

    Ji K F, Cao X Y, Gao J, Yang H H, Li T, Jidi L Y 2022 IEEE Trans. Antennas Propag. 70 11537Google Scholar

    [8]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [9]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y 2021 IEEE Trans. Antennas Propag. 69 3332Google Scholar

    [10]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Li T, Li S J 2024 IEEE Trans. Antennas Propag. 73 149

    [11]

    Ji K F, Zhou Y L, Yang H H, Li T, Li S J, Zhang Z Y 2025 IEEE Antennas Wireless Propag. Lett. 24 1302Google Scholar

    [12]

    Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Apll. Mater. Interfaces 16 65635Google Scholar

    [13]

    Zhang Z Y, Li S J, Zhou Y L, Li T, Cong L L, Feng Q, Zhao X L, Cao X Y 2024 Opt. Express. 32 24469Google Scholar

    [14]

    Jiang Y L, Tian Y X, Li J X, Yan C Y, Pan Y X 2024 IEEE Photonics Technology. Lett. 36 1117Google Scholar

    [15]

    Yue H, Chen L, Yang Y Z, He L X, Shi X W 2019 IEEE Antennas Wireless Propag. Lett. 18 54Google Scholar

    [16]

    Zhang T H, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wireless Propag. Lett. 22 665Google Scholar

    [17]

    Pu M B, Ma X L, Li X, Guo Y H, Luo X G 2017 J. Mater. Chem. C 5 436

    [18]

    Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018 Adv. Opt. Mater. 6 1800592Google Scholar

    [19]

    Huang Y J, Luo J, Pu M B, Guo Y H, Zhao Z Y, Ma X L, Li X, Luo X G 2019 Adv. Sci. 6 1801691Google Scholar

    [20]

    Xue J J, Jiang W, Gong S X 2017 Int. J. Antennas Propag. 2017 1260973

    [21]

    Li T, Yang H H, Li Q, Jiadi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [22]

    李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉 2024 73 124101Google Scholar

    Li T, Yang H H, Li Q, Liao J W, Gao K, Ji K F, Cao X Y 2024 Acta Phys. Sin. 73 124101Google Scholar

    [23]

    Rana S, Jain P 2023 Int. J. Microw. Wirel. Technol. 15 1108Google Scholar

    [24]

    冯奎胜, 李娜, 杨欢欢 2021 70 194101Google Scholar

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar

    [25]

    Liu Y, Jia Y T, Zhang W B, Wang Y Z, Guo S X, Liao G S 2019 IEEE Trans. Antennas Propag. 67 6199Google Scholar

    [26]

    Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572Google Scholar

    [27]

    Sima B, Chen K, Luo X Y, Zhao J M, Feng Y J 2019 Phys. Rev. Appl. 10 064043

    [28]

    Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag. 68 1426Google Scholar

    [29]

    Yang Y J, Wang C C, Yang H L, Li S R, Zhou X F, Jin J 2024 IEEE Trans. Antennas Propag. 72 6464Google Scholar

  • 图 1  超表面结构 (a) 单元透视图; (b) 表面俯视图; (c) 反射电磁波偏折原理

    Figure 1.  Metasurface structure: (a) Perspective view; (b) top view; (c) the principle of refraction of electromagnetic waves.

    图 2  y极化相位调控性能 (a) 反射相位; (b) 表面单站RCS

    Figure 2.  Phase control performance of y-polarization: (a) Reflection phase; (b) RCS of proposed surface.

    图 3  x极化表面单站RCS曲线 (a) Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm, R = 500 Ω; (b) Lx = 12.0 mm, Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm

    Figure 3.  X-polarized RCS of proposed surface: (a) Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm, R = 500 Ω; (b) Lx = 12.0 mm, Ly1 = 11.9 mm, Ly2 = 10.5 mm, Ly3 = 9.6 mm, Ly4 = 3.8 mm.

    图 4  超表面散射方向图 (a) 金属板; (b) x极化; (c) y极化

    Figure 4.  Scattering patterns of the metasurface: (a) Metal; (b) x polarization; (c) y polarization.

    图 5  超表面天线设计过程 (a) 超表面; (b) 参考天线; (c) 传统设计天线; (d) 天线1; (e)天线2

    Figure 5.  Design process of metasurface antennas: (a) Metasurface; (b) reference antenna; (c) traditional antenna; (d) antenna 1; (e) antenna 2.

    图 6  辐射电流分布图 (a) 参考天线; (b) 天线1; (c) 天线2

    Figure 6.  Radiation current distribution map: (a) Reference antenna; (b) antenna 1; (c) antenna 2.

    图 7  天线2辐射结构等效电路图 (a) 辐射贴片; (b) 寄生贴片

    Figure 7.  Equivalent circuit diagram of the antenna 2 radiation structure: (a) Radiation patch; (b) parasitic patch.

    图 8  天线辐射性能 (a) 反射系数; (b) 增益. 6.8 GHz处三维辐射方向图 (c) 参考天线; (d) 传统设计天线; (e) 天线1; (f) 天线2

    Figure 8.  Radiation performance comparison of the antennas: (a) Reflection coefficient; (b) gain. 3D radiation patterns at 6.8 GHz: (c) reference antenna; (d) traditional antenna; (e) antenna 1; (f) antenna 2.

    图 9  天线RCS对比 (a) x极化; (b) y极化

    Figure 9.  RCS comparison of the antennas: (a) x polarization; (b) y polarization.

    图 10  三维散射方向图 (a)—(f) 参考天线; (g)—(l)天线2

    Figure 10.  Scattering patterns of the antennas: (a)–(f) Reference antenna; (g)–(l) antenna 2.

    图 11  散射电流分布对比 (a)—(c)超表面; (b)—(d)天线2

    Figure 11.  Scattering current distribution comparison: (a)–(c) Metasurface; (b)–(d) antenna 2.

    图 12  实验测试 (a)天线样件; (b)测试环境

    Figure 12.  Experiment: (a) Fabricated antenna; (b) test environment.

    图 13  天线2的实测与仿真辐射性能对比 (a) 反射系数; (b) 二维辐射方向图

    Figure 13.  Comparison of measured and simulated radiation performance of antenna 2: (a) Reflection coefficient; (b) 2D radiation patterns.

    图 14  天线2的 RCS减缩曲线

    Figure 14.  Monostatic RCS reduction of antenna 2.

    表 1  矩形贴片边长Ly取值与中心频率对应关系(Lx = 12.0 mm)

    Table 1.  Relationship between the side length Ly of the patch and the frequency (Lx = 12.0 mm).

    频率/GHz 第一矩形贴片边长Ly1/mm 第二矩形贴片边长Ly2/mm 第三矩形贴片边长Ly3/mm 第四矩形贴片边长Ly4/mm
    6.5 13.2 12.2 11.6 4.1
    7.5 11.9 10.5 9.6 3.8
    9.0 10.3 8.8 7.9 3.5
    DownLoad: CSV
    Baidu
  • [1]

    Zhang L, Chen X Q, Liu S, Zhang Q, Zhao J, Dai J Y, Bai G D, Wan X, Cheng Q, Castaldi G, Galdi V, Cui T J 2018 Nat. Commun. 9 4334Google Scholar

    [2]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [3]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar

    [4]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. 70 76

    [5]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Guo Z X, Li T 2024 IEEE Antennas Wireless Propag. Lett. 23 2046Google Scholar

    [6]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microw. Antennas Propag. 12 1793Google Scholar

    [7]

    Ji K F, Cao X Y, Gao J, Yang H H, Li T, Jidi L Y 2022 IEEE Trans. Antennas Propag. 70 11537Google Scholar

    [8]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [9]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y 2021 IEEE Trans. Antennas Propag. 69 3332Google Scholar

    [10]

    Ji K F, Zhou Y L, Yang H H, Zhang Z Y, Li T, Li S J 2024 IEEE Trans. Antennas Propag. 73 149

    [11]

    Ji K F, Zhou Y L, Yang H H, Li T, Li S J, Zhang Z Y 2025 IEEE Antennas Wireless Propag. Lett. 24 1302Google Scholar

    [12]

    Zhang Z Y, Zhou Y L, Li S J, Tian J H, Cong L L, Yang H H, Cao X Y 2024 ACS Apll. Mater. Interfaces 16 65635Google Scholar

    [13]

    Zhang Z Y, Li S J, Zhou Y L, Li T, Cong L L, Feng Q, Zhao X L, Cao X Y 2024 Opt. Express. 32 24469Google Scholar

    [14]

    Jiang Y L, Tian Y X, Li J X, Yan C Y, Pan Y X 2024 IEEE Photonics Technology. Lett. 36 1117Google Scholar

    [15]

    Yue H, Chen L, Yang Y Z, He L X, Shi X W 2019 IEEE Antennas Wireless Propag. Lett. 18 54Google Scholar

    [16]

    Zhang T H, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wireless Propag. Lett. 22 665Google Scholar

    [17]

    Pu M B, Ma X L, Li X, Guo Y H, Luo X G 2017 J. Mater. Chem. C 5 436

    [18]

    Guo Y H, Ma X L, Pu M B, Li X, Zhao Z Y, Luo X G 2018 Adv. Opt. Mater. 6 1800592Google Scholar

    [19]

    Huang Y J, Luo J, Pu M B, Guo Y H, Zhao Z Y, Ma X L, Li X, Luo X G 2019 Adv. Sci. 6 1801691Google Scholar

    [20]

    Xue J J, Jiang W, Gong S X 2017 Int. J. Antennas Propag. 2017 1260973

    [21]

    Li T, Yang H H, Li Q, Jiadi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [22]

    李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉 2024 73 124101Google Scholar

    Li T, Yang H H, Li Q, Liao J W, Gao K, Ji K F, Cao X Y 2024 Acta Phys. Sin. 73 124101Google Scholar

    [23]

    Rana S, Jain P 2023 Int. J. Microw. Wirel. Technol. 15 1108Google Scholar

    [24]

    冯奎胜, 李娜, 杨欢欢 2021 70 194101Google Scholar

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar

    [25]

    Liu Y, Jia Y T, Zhang W B, Wang Y Z, Guo S X, Liao G S 2019 IEEE Trans. Antennas Propag. 67 6199Google Scholar

    [26]

    Liu Y, Zhang W B, Jia Y T, Wu A Q 2021 IEEE Trans. Antennas Propag. 69 572Google Scholar

    [27]

    Sima B, Chen K, Luo X Y, Zhao J M, Feng Y J 2019 Phys. Rev. Appl. 10 064043

    [28]

    Guo W L, Chen K, Wang G M, Luo X Y, Feng Y J, Qiu C W 2020 IEEE Trans. Antennas Propag. 68 1426Google Scholar

    [29]

    Yang Y J, Wang C C, Yang H L, Li S R, Zhou X F, Jin J 2024 IEEE Trans. Antennas Propag. 72 6464Google Scholar

Metrics
  • Abstract views:  1748
  • PDF Downloads:  37
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2025
  • Accepted Date:  27 July 2025
  • Available Online:  02 September 2025
  • Published Online:  20 October 2025
  • /

    返回文章
    返回
    Baidu
    map