搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压力调控的双态转换材料

陈恩 温婷 林传龙 王永刚

引用本文:
Citation:

压力调控的双态转换材料

陈恩, 温婷, 林传龙, 王永刚

Pressure-Modulated Bistable Switching Materials

En Chen, Ting Wen, Chuanlong Lin, Yonggang Wang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 双态转换材料可在两稳定状态间可逆切换,是下一代信息存储、光电器件与量子调控的核心载体。高压因其通用性与可控性,可用于调控晶体结构、晶体场与电子结构,是实现多种物理性质双态转换的有效外场手段。本文综述了利用高压技术实现材料光、电等双态转换现象的研究进展,包括压致倍频转换、发光/变色转换、绝缘体-金属相变,半导体载流子类型的n-p转换和自旋交叉的调控,并重点讨论其中的构效关系研究以及原位表征方法。此外,部分体系还可在更复杂能量势面上表现出多态转换特征,可视作双态调控的延伸,为实现多进制信息编码与高密度数据存储提供新的可能。最后针对该领域目前在低压化与器件化和相变的可逆性等方向面临的困难,提出发展金刚石对顶砧集成微纳电极、光纤耦合及片上高压腔、降低转换压力到实用范围等潜在方向,以推动双态材料在超低功耗存储与可重构光电器件中的工程化应用。
    Bistable switching materials that enable reversible transitions between distinct stable states have emerged as a transformative platform for next-generation information technologies, optoelectronics, and quantum control. The application of high pressure serves as a powerful and precisely tunable stimulus for manipulating crystal structures, electronic configurations, and crystal fields, thereby enabling deterministic switching of diverse physical properties. This review systematically examines recent advances in pressure-induced bistable transitions, encompassing nonlinear optical switching via symmetry breaking, luminescence and color transitions mediated by bandgap engineering, insulator-metal transitions driven by electronic correlation effects, semiconductor carrier-type inversion, and spin crossover phenomena. Through comprehensive analysis integrating in situ high-pressure characterization techniques including synchrotron X-ray diffraction, vibrational spectroscopy, spatially resolved photoluminescence mapping, nonlinear optical microscopy, and transport measurements, we establish quantitative correlations between structural evolution, local coordination changes, and macroscopic switching responses. These multimodal investigations reveal fundamental mechanisms governing bistable transitions, particularly highlighting the critical roles of pressure-controlled symmetry breaking, coordination reconstruction, lone-pair stereochemical activity, and electronic correlation tuning. Notably, certain material systems exhibit extended multistate switching characteristics on complex energy landscapes, offering promising avenues for advanced applications in high-density data storage beyond conventional bistability. However, practical implementation faces significant challenges including the relatively high switching pressures required, limited reversibility in some systems, and difficulties in device integration. To solve current challenges, we proposed potential solutions including the development of diamond anvil cell-integrated micro/nanoelectrodes, fiber-optic coupled on-chip high-pressure cells, and strategies to reduce switching pressures to practical ranges. This work provides fundamental insights into the mechanisms of pressure-driven state switching while simultaneously outlining practical pathways toward realizing devices and reconfigurable optoelectronic systems. The integration of advanced in situ characterization techniques with theoretical understanding offers a robust framework for both fundamental research and technological applications of bistable switching materials under pressure.
  • [1]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [2]

    Burr G W, Breitwisch M J, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras L A, Padilla A, Rajendran B, Raoux S, Shenoy R S 2010 J. Vac. Sci. Technol. B 28 223

    [3]

    Chen Y 2020 IEEE Trans. Electron Devices 67 1420

    [4]

    Nilges T, Lange S, Bawohl M, Deckwart J M, Janssen M, Wiemhöfer H D, Decourt R, Chevalier B, Vannahme J, Eckert H, Weihrich R 2009 Nat. Mater. 8 101

    [5]

    Guin S N, Pan J, Bhowmik A, Sanyal D, Waghmare U V, Biswas K 2014 J. Am. Chem. Soc. 136 12712

    [6]

    Dutta M, Sanyal D, Biswas K 2018 Inorg. Chem. 57 7481

    [7]

    Xiao C, Qin X, Zhang J, An R, Xu J, Li K, Cao B, Yang J, Ye B, Xie Y 2012 J. Am. Chem. Soc. 134 18460

    [8]

    Shi Y, Assoud A, Sankar C R, Kleinke H 2017 Chem. Mater. 29 9565

    [9]

    Roy P, Waghmare V, Tanwar K, Maiti T 2017 Phys. Chem. Chem. Phys. 19 5818

    [10]

    Roy P, Maiti T 2018 J. Phys. D: Appl. Phys. 51 065104

    [11]

    Zhang Y, Zhang W, Li S H, Ye Q, Cai H L, Deng F, Xiong R G, Huang S D 2012 J. Am. Chem. Soc. 134 11044

    [12]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151

    [13]

    Varela H, Huguenin F, Malta M, Torresi R M 2002 Quim. Nova 25 287

    [14]

    Pan C Y, Yang X R, Xiong L, Lu Z W, Zhen B Y, Sui X, Deng X B, Chen L, Wu L M 2020 J. Am. Chem. Soc. 142 6423

    [15]

    Irie M, Fukaminato T, Matsuda K, Kobatake S 2014 Chem. Rev. 114 12174

    [16]

    Katsonis N, Kudernac T, Walko M, Van Der Molen S J, Van Wees B J, Feringa B L 2006 Adv. Mater. 18 1397

    [17]

    Ohkoshi S I, Imoto K, Tsunobuchi Y, Takano S, Tokoro H 2011 Nat. Chem. 3 564

    [18]

    He R Q, Zeng Y Y, Leng H J, Wang R J, Peng F, Liang H, Fang L M 2025 Chin. J. High Press. Phys. 39 90202 (in Chinese) [何瑞琦,曾莹莹,冷浩杰,王润基,彭放,梁浩,房雷鸣 2025 高压 39 90202]

    [19]

    Tian R F, Ye P D, Chen Y X, Jin M L, Li X 2024 Chin. J. High Press. Phys. 38 050104 (in Chinese) [田瑞丰,叶鹏达,陈宇翔,金美玲,李翔 2024 高压 38 050104]

    [20]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘 国端, 寇自力 2017 66 038103]

    [21]

    Duan D F, Ma Y B, Shao Z J, Xie H, Huang X L, Liu B B, Cui T 2017 Acta Phys. Sin. 66 036102 (in Chinese) [段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田 2017 66 036102]

    [22]

    Cheng J G 2017 Acta Phys. Sin. 66 037401 (in Chinese) [程金光 2017 66 037401]

    [23]

    Zhang K X, Guo J N, Wang Y L, Wu X Y, Huang X L, Cui T 2025 Chin. Phys. Lett. 42 110704

    [24]

    Mao H G, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [25]

    Zhao L, Wu N N, Chen H X, Li M Z, Liang X B 2025 Chin. J. High Press. Phys. 39 90203 (in Chinese) [赵亮,吴楠楠,陈慧轩,李明哲,梁晓波 2025 高压 39 90203]

    [26]

    Xu T C, Deng Y H, Hong C, Huang H J, Xu F 2025 Chin. J. High Press. Phys. 39 031101 (in Chinese) [徐天成,邓袁昊,洪晨,黄海军,徐丰 2025 高压 39 031101]

    [27]

    Li X D, Li H, Li P S 2017 Acta Phys. Sin. 66 036203 (in Chinese) [李晓东, 李晖, 李鹏善 2017 66 036203]

    [28]

    Huang X L, Wang X, Liu M K, Liang Y F, Liu B B, Cui T 2017 Acta Phys. Sin. 66 037403 (in Chinese) [黄晓丽, 王鑫, 刘明坤, 梁永福, 刘冰冰, 崔田 2017 66 037403]

    [29]

    Rueff J P, Kao C C, Struzhkin V V, Badro J, Shu J, Hemley R J, Mao H K 1999 Phys. Rev. Lett. 82 3284

    [30]

    Wang Y G, Bai L G, Wen T, Yang L X, Gou H Y, Xiao Y M, Chow P, Pravica M, Yang W G, Zhao Y S 2016 Angew. Chem. 128 10506

    [31]

    Kawakami T, Tsujimoto Y, Kageyama H, Chen X Q, Fu C L, Tassel C, Kitada A, Suto S, Hirama K, Sekiya Y, Makino Y, Okada T, Yagi T, Hayashi N, Yoshimura K, Nasu S, Podloucky R, Takano M 2009 Nat. Chem. 1 371

    [32]

    Lin J F, Vankó G, Jacobsen S D, Iota V, Struzhkin V V, Prakapenka V B, Kuznetsov A, Yoo C S 2007 Science 317 1740

    [33]

    Shi Y, Ma Z W, Zhao D L, Chen Y P, Cao Y, Wang K, Xiao G J, Zou B 2019 J. Am. Chem. Soc. 141 6504

    [34]

    Fang Y Y, Zhang L, Wu L Y, Yan J J, Lin Y, Wang K, W. L. Mao, Zou B 2019 Angew. Chem., Int. Ed. 58 15249

    [35]

    Jiang D Q, Jiang X X, Zhang X, Li C, Liu K, Ma Y Y, Cheng H M, Pei T Y, Wen T, Lin Z S, Li F F, Wang Y G 2024 J. Am. Chem. Soc. 146 23508

    [36]

    Naumov P G, Baskakov A O, Starchikov S S, Lyubutin I S, Ogarkova Y L, Lyubutina M V, Barkalov O I, Medvedev S A 2020 JETP Lett. 111 456

    [37]

    Wu Z, Wang Y X, Dou Y J, Zhou L, Zhu J 2023 Nano Research Energy 2 e9120080

    [38]

    Li S J, Dong Q, Feng J, Wang Y J, Hou M Q, Deng W, Susilo R A, Li N N, Dong H L, Wan S, Gao C X, Chen B 2021 Inorg. Chem. 60 7857

    [39]

    Li C, Liu K, Jin C, Jiang D Q, Jiang Z M, Wen T, Yue B B, Wang Y G 2022 Inorg. Chem. 61 11923

    [40]

    Li C, Liu K, Peng S, Feng Q, Jiang D Q, Wen T, Xiao H, Yue B B, Wang Y G 2023 Chem. Mater. 35 1449

    [41]

    Wang Y G, Zhou Z Y, Wen T, Zhou Y N, Li N N, Han F, Xiao Y M, Chow P, Sun J L, Pravica M, Cornelius A L, Yang W G, Zhao Y S 2016 J. Am. Chem. Soc. 138 15751

    [42]

    Wang Y G, Ying J J, Zhou Z Y, Sun J L, Wen T, Zhou Y N, Li N N, Zhang Q, Han F, Xiao Y M, Chow P, Yang W G, Struzhkin V V, Zhao Y S, Mao H K 2018 Nat. Commun. 9 1914

    [43]

    Jiang D Q, Song H M, Wen T, Jiang Z M, Li C, Liu K, Yang W G, Huang H W, Wang Y G 2022 Angew. Chem., Int. Ed. 61 e202116656

    [44]

    Hao M N, Chen X, Ying T P, Chai C C, Lu J L, Li Q, Liu Z L, Yang M Z, Wang J J, Sun R J, Jia D H, Wang X Y, Gou H Y, Guo J G, Jin S F, Chen X L 2024 J. Am. Chem. Soc. 146 11465

    [45]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118

    [46]

    Chen J, Hu C L, Kong F, Mao J G 2021 Acc. Chem. Res. 54 2775

    [47]

    Li Y, Yang G, Dreger Z A, White J O, Drickamer H G 1998 J. Phys. Chem. B 102 5963

    [48]

    Bayarjargal L, Winkler B 2014 Z. Kristallogr. 229 92

    [49]

    Qu J, Wang Y M, Li Z Y, Li M T, Pei T Y, Li N N, Jiang D Q, Yang B, Li B, Ye M Y, Zhu P W, Wang Y G, Liu G, Wang X, Yang W G 2025 J. Am. Chem. Soc. 147 6717

    [50]

    Bu K J, Fu T H, Du Z W, Feng X, Wang D, Li Z Y, Guo S H, Sun Z D, Luo H, Liu G, Ding Y, Zhai T Y, Li Q, Lü X J 2023 Chem. Mater. 35 242

    [51]

    Jiang D Q, Jiang Z M, Song H M, Wang P, Luo H, Li C, Liu K, Wen T, Yang W G, Zhao Y S, Wang Y G 2021 Chem. Mater. 33 2929

    [52]

    Ye L T, Zhou W J, Huang D J, Jiang X, Guo Q B, Cao X Y, Yan S H, Wang X Y, Jia D H, Jiang D Q, Wang Y G, Wu X Q, Zhang X, Li Y, Lei H C, Gou H Y, Huang B 2023 Nat. Commun. 14 5911

    [53]

    Xie Z K, Luo R, Ying T P, Gao Y R, Song B Q, Yu T X, Chen X, Hao M N, Chai C C, Yan J S, Huang Z H, Chen Z G, Du L J, Zhu C Q, Guo J G, Chen X L 2024 Nat. Chem. 16 1803

    [54]

    Zou B Y, Han Y X, Yang Z H, Wang Q L, Wang G Y, Zhang G Z, Li Y W, Liu C L 2024 APL Mater. 12 030601

    [55]

    Liu K, Li C, Jiang D Q, Ma Y Y, Wen T, Yue B B, Wang Y G 2023 J. Mater. Chem. C. 11 15833

    [56]

    Liu S, Sun S S, Gan C K, Granados del Águila A, Fang Y N, Xing J, Thu Ha Do T, White T J, Li H G, Huang W, Xiong Q H 2019 Sci. Adv. 5 eaav9445

    [57]

    Ma Y Y, Wen T, Liu K, Li C, Jiang D Q, Chen E, Pei T Y, Lin C L, Wang Y G 2024 J. Mater. Chem. C 12 2379

    [58]

    Yu X H, Fang Y Y, Sun X N, Xie Y, Liu C L, Wang K, Xiao G J, Zou B 2024 Angew. Chem., Int. Ed. 63 e202412756

    [59]

    Zhu Z K, Li Z Y, Kong L P, Liu G 2024 Chin. J. High Press. Phys. 38 050101 (in Chinese) [朱 智凯,栗中杨,孔令平,刘罡 2024 高压 38 050101]

    [60]

    Ma Z W, Liu Z, Lu S Y, Wang L R, Feng X L, Yang D W, Wang K, Xiao G J, Zhang L J, Redfern S A T, Zou B 2018 Nat. Commun. 9 4506

    [61]

    Xu T G, Zhai C G, Liu Z Y, Yang X Y, Hu S H, Shang Y C, Yue L, Dong J J, Liu R, Li Q J, Yao M G, Liu B B 2025 Nat. Commun. 16 3550

    [62]

    Yao X R, Li H Q, Li Z Q, Huang X P, Zhao Y S, Liu X X, Zhu P W, Liu B B, Cui T, Sun C, Bao Y J 2020 J. Phys. Chem. C 124 7523

    [63]

    Liu S, Li C Y, Figiel J J, Brueck S R J, Brener I, Wang G T 2015 Nanoscale 7 9581

    [64]

    Gao X J, Wang Q, Zhang Y, Cui C L, Sui N, Chi X C, Zhang H Z, Zhou Q, Bao Y J, Wang Y H 2020 J. Phys. Chem. C 124 11239

    [65]

    Yao X R, Li R Y, Zhang Z H, Wei X M, Gai X M, Zhu J M, Yu H Y, Wang X, Bao Y J 2024 J. Phys. Chem. Lett. 15 12619

    [66]

    Yao X R, Yang F, Ma Y, Dong Y L, Chen L Q, Dong X J, Huo S Y, Wang X, Bao Y J 2025 J. Phys. Chem. C 129 10987

    [67]

    Huang Y D, Yang L, Liu C, Liu X X, Liu J S, Huang X P, Zhu P W, Cui T, Sun C, Bao Y J 2019 J. Phys. Chem. Lett. 10 610

    [68]

    Liu C, Li Z Q, Yang L, Yao X R, Li H Q, Liu X X, Zhao Y S, Zhu P W, Cui T, Sun C, Bao Y J 2019 J. Phys. Chem. C 123 30221

    [69]

    Zeng Q R, Zhang Y J, Zhuang Y K, Yang L F, Wang Q M, Sun Y 2025 Chin. Phys. B 34 096102

    [70]

    Yu Z H, Ye Y G, Yang P T, Wang Y M, Chen L C, Li C L, Yuan J, Liu Z Y, Shen Z W, Wang S J, Li M T, Chu C Y, Wang X, Li J, Wang L, Yang W G, Guo Y F 2025 Chin. Phys. B 34 088102

    [71]

    Jiao Y Y, Liu Z Y, Wang N N, Wang B S, Sun J P, Cheng J G 2025 Chin. Phys. Lett. 42 057404

    [72]

    Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y, Mao W L 2015 Nat. Commun. 6 7312

    [73]

    Wang X F, Chen X L, Zhou Y H, C. Park, Chao A, Zhou Y, Zhang R R, Gu C C, Yang W G, Yang Z R 2017 Sci. Rep. 7 46694

    [74]

    Chi Z H, Zhao X M, Zhang H D, Goncharov A F, Lobanov S S, Kagayama T, Sakata M, Chen X J 2014 Phys. Rev. Lett. 113 036802

    [75]

    Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D, Lin J F 2014 Nat. Commun. 5 3731

    [76]

    Nayak A P, Yuan Z, Cao B X, Liu J, Wu J J, Moran S T, Li T S, Akinwande D, Jin C Q, Lin J F 2015 ACS Nano 9 9117

    [77]

    Xiang Z J, Ye G J, Shang C, Lei B, Wang N Z, Yang K S, Liu D Y, Meng F B, Luo X G, Zou L J, Sun Z, Zhang Y, Chen X H 2015 Phys. Rev. Lett. 115 186403

    [78]

    Balchan A S, Drickamer H G 1961 J. Chem. Phys. 34 1948

    [79]

    Sakai N, Takemura K, Tsuji K 1982 J. Phys. Soc. Jpn. 51 1811

    [80]

    Ishikawa T, Mukai K, Tanaka Y, Sakata M, Nakamoto Y, Matsuoka T, Shimizu K, Ohishi Y 2013 High Pressure Res. 33 186

    [81]

    Desgreniers S, Vohra Y K, Ruoff A L 1990 J. Phys. Chem. 94 1117

    [82]

    Pasternak M P, Rozenberg G K, Machavariani G Y, Naaman O, Taylor R D, Jeanloz R 1999 Phys. Rev. Lett. 82 663

    [83]

    Badro J, Fiquet G, Struzhkin V V, Somayazulu M, Mao H K, Shen G Y, Le Bihan T 2002 Phys. Rev. Lett. 89 205504

    [84]

    Mattila A, Rueff J P, Badro J, VankóG, Shukla A 2007 Phys. Rev. Lett. 98 196404

    [85]

    Lyubutin I S, Ovchinnikov S G, Gavriliuk A G, Struzhkin V V 2009 Phys. Rev. B 79 085125

    [86]

    Li C, Liu K, Yan H C, Zhang L, Jiang D Q, Wen T, Yue B B, Wang Y G 2024 Adv. Mater. 36 2407922

    [87]

    Shchennikov V V, Morozova N V, Ovsyannikov S V 2012 J. Appl. Phys. 111 112624

    [88]

    Singh A K, Ramani G 1978 Rev. Sci. Instrum. 49 1324

    [89]

    Shchennikov V V, Ovsyannikov S V, Manakov A Y 2010 J. Phys. Chem. Solids 71 1168

    [90]

    Shchennikov V V, Ovsyannikov S V, Bazhenov A V 2008 J. Phys. Chem. Solids 69 2315

    [91]

    Morozova N V, Shchennikov V V, Ovsyannikov S V 2015 J. Appl. Phys. 118 225901

    [92]

    Goni A R, Syassen K 1998 Semicond. Semimet. 54 247

    [93]

    Mujica A, Rubio A, Muñ Oz A, Needs R J 2003 Rev. Mod. Phys. 75 863

    [94]

    Ovsyannikov S V, Shchennikov V V 2004 Solid State Commun. 132 333

    [95]

    Ding J C, Liu C D, Xi L L, Xi J Y, Yang J 2021 J. Materiomics 7 310

    [96]

    Saleem M, Ullah F, Qureshi M T, Abdel Hameed R S, Abdallah M, Farghaly O, Othman M, Atta A 2022 J. Alloy. Compd. 921 166175

    [97]

    Shchennikov V V, Ovsyannikov S V 2007 Phys. Stat. Sol. (b) 244 437

    [98]

    Khan H U, Inam F, Karim A, Bhatti A S 2024 J. Non. Cryst. Solids 646 123236

    [99]

    Shchennikov V V 2002 Defect Diffus. Forum 275 208

    [100]

    Morozova N V, Korobeinikov I V, Kurochka K V, Ovsyannikov S V, 2020 J. Appl. Phys. 128 245902

    [101]

    Shchennikov V V, Ovsyannikov S V 2003 Solid State Commun. 126 373

    [102]

    Ohtani A, Seike T, Motobayashit M, Onodera A 1982 J. Phys. Chem. Solids 43 627

    [103]

    Li M T, Zhang D J, Han J, Fang Y F, Li N N, Liu X Q, Wang B H, Yan L M, Chen F, Li Y L, Yang W G 2021 Phys. Rev. B 104 054511

    [104]

    Korobeinikov I V, Morozova N V, Shchennikov V V, Ovsyannikov S V 2017 Sci. Rep. 7 44220

    [105]

    Shchennikov V V, Ovsyannikov S V, Derevskov A Y 2002 Phys. Solid State 44 1762

    [106]

    Ovsyannikov S V, Shchennikov V V, Popova S V, Derevskov A Y 2003 Phys. Stat. Sol. (b) 235 521

    [107]

    Ovsyannikov S V, Shchennikov V V 2007 Appl. Phys. Lett. 90 122103

    [108]

    Ovsyannikov S V, Korobeinikov I V, Morozova N V, Misiuk A, Abrosimov N V, Shchennikov V V 2012 Appl. Phys. Lett. 101 062107

    [109]

    Ovsyannikov S V, Wu X, Garbarino G, Núñez-Regueiro M, Shchennikov V V, Khmeleva J A, Karkin A E, Dubrovinskaia N, Dubrovinsky L 2013 Phys. Rev. B 88 184106

    [110]

    Ovsyannikov S V, Karkin A E, Morozova N V, Shchennikov V V, Bykova E, Abakumov A M, Tsirlin A A, Glazyrin K V, Dubrovinsky L 2014 Adv. Mater. 26 8185

    [111]

    Morozova N V, Korobeinikov I V, Kurochka K V, Titov A N, Ovsyannikov S V 2018 J. Phys. Chem. C 122 14362

    [112]

    Zhang J K, Han Y H, Liu C L, Ren W B, Li Y, Wang Q L, Su N N, Li Y Q, Ma B H, Ma Y Z, Gao C X 2011 J. Phys. Chem. C 115 20710

    [113]

    Gao Y, Gu Y S, Zhuang T, Tian L H, Gu G R, Piao H G, Wu B J, Han Y H 2025 AIP Adv. 15 025316

    [114]

    Daly M S, Lubczynski W, Warburton R J, Symons D M, Lakrimi M, Dalton K S H, Van Der Burgt M, Nicholas R J, Mason N J, Walker P J 1995 J. Phys. Chem. Solids 56 453

    [115]

    Errandonea D, Segura A, Martínez-García D, Muñoz-San Jose V 2009 Phys. Rev. B 79 125203

    [116]

    Li Y Q, Gao Y, Han Y H, Liu C L, Peng G, Wang Q L, Ke F, Ma Y Z, Gao C X 2015 Appl. Phys. Lett. 107 142103

    [117]

    Zhang J K, Liu C L, Zhang X, Ke F, Han Y H, Peng G, Ma Y Z, Gao C X 2013 Appl. Phys. Lett. 103 082116

    [118]

    Zhang G Z, Wu B J, Wang J, Zhang H W, Liu H, Zhang J K, Liu C L, Gu G R, Tian L H, Ma Y Z, Gao C X 2017 Sci. Rep. 7 2656

    [119]

    Wen T, Wang Y G, Li N N, Zhang Q, Zhao Y S, Yang W G, Zhao Y S, Mao H K 2019 J. Am. Chem. Soc. 141 505

    [120]

    Li C, Liu K, Jiang D Q, Wen T, Chen E, Ma Y Y, Yue B B, Chu S Q, Wang Y G 2023 Chem. Mater. 35 4821

    [121]

    Yue L, Tian F Y, Liu R, Li Z L, Li R X, Li C Y, Li Y C, Yang D L, Li X D, Li Q J, Zhang L J, Liu B B 2025 Natl. Sci. Rev. 12 nwae419

    [122]

    Maltempo M M, Moss T H, Spartalian K 1980 J. Chem. Phys. 73 2100

    [123]

    Grunert C M, Reiman S, Spiering H, Kitchen J A, Brooker S, Gütlich P 2008 Angew. Chem. 120 3039

    [124]

    Bengtson A, Li J, Morgan D 2009 Geophys. Res. Lett. 36 L15301

    [125]

    Kuzmann E, Homonnay Z, Klencsár Z, Szalay R 2021 Molecules 26 1062

    [126]

    Bhide V G, Rajoria D S, Rao G R, Rao C N R 1972 Phys. Rev. B 6 1021

    [127]

    Gütlich P, Garcia Y, Goodwin H A 2000 Chem. Soc. Rev. 29 419

    [128]

    Real J A, Gaspar A B, Carmen Muñoz M 2005 Dalton Trans. 2062

    [129]

    Romanini M, Wang Y X, Gürpinar K, Ornelas G, Lloveras P, Zhang Y, Zheng W, Barrio M, Aznar A, Gràcia-Condal A, Emre B, Atakol O, Popescu C, Zhang H, Long Y, Balicas L, Lluís Tamarit J, Planes A, Shatruk M, Mañosa L 2021 Adv. Mater. 33 2008076

    [130]

    Hembacher S, Giessibl F J, Mannhart J 2004 Science 305 380

    [131]

    Lin J F, Struzhkin V V, Jacobsen S D, Hu M Y, Chow P, Kung J, Liu H Z, Mao H K, Hemley R J 2005 Nature 436 377

    [132]

    Speziale S, Milner A, Lee V E, Clark S M, Pasternak M P, Jeanloz R 2005 Proc. Natl. Acad. Sci. 102 17918

  • [1] 赵婷婷, 李梅, 彭赏, 赵博浩, 冯琦, 陈彦龙, 袁骏, 韩莹雪, 安娇, 王毫, 蒋升, 林传龙. 高压对力致发光的调控:总结与展望.  , doi: 10.7498/aps.75.20251312
    [2] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究.  , doi: 10.7498/aps.74.20250042
    [3] 赵世杰, 马浩南, 刘霞. 基于扫描热探针技术的二维材料物性调控研究进展.  , doi: 10.7498/aps.74.20241590
    [4] 李宽, 崔国梁, 刘美壮, 徐小志. 二维过渡金属硫化物的晶相结构与物性调控.  , doi: 10.7498/aps.74.20251141
    [5] 李辰恺, 朱金龙. 高压调控过渡金属硫族化合物及异质结构的光电性质.  , doi: 10.7498/aps.74.20250498
    [6] 吴姝颖, 马帅领, 赵春燕, 李世新, 叶梅艳, 戚梦瑶, 赵行斌, 王玲瑞, 崔田. 高压下非铅双钙钛矿Cs2TeCl6的光电性质调控.  , doi: 10.7498/aps.74.20250693
    [7] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变.  , doi: 10.7498/aps.72.20230730
    [8] 韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧. 表面原子操纵与物性调控研究进展.  , doi: 10.7498/aps.71.20220405
    [9] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质.  , doi: 10.7498/aps.69.20200988
    [10] 朱陆尧, 王鹏, 翟春光, 胡阔, 姚明光, 刘冰冰. 酞菁晶体结构与荧光性质的压力调控.  , doi: 10.7498/aps.68.20190559
    [11] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理.  , doi: 10.7498/aps.67.20181651
    [12] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究.  , doi: 10.7498/aps.66.039101
    [13] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , doi: 10.7498/aps.66.036203
    [14] 白俊雪, 郭伟玲, 孙捷, 樊星, 韩禹, 孙晓, 徐儒, 雷珺. GaN基高压发光二极管理想因子与单元个数关系研究.  , doi: 10.7498/aps.64.017303
    [15] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究.  , doi: 10.7498/aps.62.140702
    [16] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究.  , doi: 10.7498/aps.62.046202
    [17] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响.  , doi: 10.7498/aps.62.049101
    [18] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , doi: 10.7498/aps.60.050702
    [19] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究.  , doi: 10.7498/aps.59.4235
    [20] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分.  , doi: 10.7498/aps.55.6589
计量
  • 文章访问数:  42
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-06

/

返回文章
返回
Baidu
map