搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压对力致发光的调控:总结与展望

赵婷婷 李梅 彭赏 赵博浩 冯琦 陈彦龙 袁骏 韩莹雪 安娇 王毫 蒋升 林传龙

引用本文:
Citation:

高压对力致发光的调控:总结与展望

赵婷婷, 李梅, 彭赏, 赵博浩, 冯琦, 陈彦龙, 袁骏, 韩莹雪, 安娇, 王毫, 蒋升, 林传龙

Mechanoluminescence under High Pressure: Summary and Prospects

ZHAO Tingting, LI Mei, Peng Shang, ZHAO Bohao, FENG Qi, CHEN Yanlong, YUAN Jun, Han Yingxue, AN Jiao, WANG Hao, JIANG Sheng, LIN Chuanlong
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 力致发光( Mechanoluminescence,简记为ML)是一种在机械刺激下可直接发光的现象。因其具备高空间选择性、快速响应及多模式发光协同等特性,在结构健康监测、智能传感与光学防伪等领域展现出巨大的应用潜力。然而,该领域仍面临机理尚不明确、性能优异的可应用材料数量有限,以及测试标准尚未建立等挑战。近年来,高压科学技术(尤其是动态加载技术)的持续突破与创新,为ML研究提供了新的探索途径。在GPa级高压条件下,通过调控ML材料的原子间距、电子轨道和晶体结构,不仅实现了对其发光强度与颜色的高效调控,还成功捕获到从微秒到秒量级的发光动力学演化过程,为揭示ML微观机制提供了关键实验数据支撑。本文概述了高压技术在ML材料性能优化与机理研究方面的应用进展,总结了其在提高发射强度、调控发光光谱、揭示动态过程等方面的成果,并对未来高压力致发光研究的发展方向与挑战进行展望。
    Mechanoluminescence (ML) is a phenomenon in which photon emission is produced directly under mechanical stimulation. Owing to its high spatial selectivity, rapid response, and multimodal emission capabilities, ML exhibits great potential for applications in structural health monitoring, intelligent sensing, and optical anti-counterfeiting. However, due to the complexity of ML modes, categories, and underlying kinetic processes, the field still faces several challenges, including the lack of a well-established mechanism, the limited availability of high-performance ML materials, and the absence of standardized testing standards. Existing studies have demonstrated that crystal field strength, band structure, and lattice configuration play crucial roles in governing the ML properties. High-pressure, with its unique ability to tune these physical quantities, undoubtedly provides new pathways for advancing ML research. Recent breakthroughs in rapid loading techniques have further enabled the exploration of ML behaviors under high-pressure conditions. In the GPa pressure range, modulation of interatomic distances, electronic orbitals, and crystal structures has not only allowed effective control over emission intensity and color, but has also enabled the capture of ML kinetic processes over microsecond–second timescales, thereby supplying essential experimental data for revealing the microscopic mechanisms of ML. In this review, we first provide a brief overview of the historical development, classification, and mechanistic understanding of ML, together with commonly employed ML characterization methods under ambient and high-pressure conditions. We then summarize recent progress in the application of high-pressure techniques for optimizing ML performance and elucidating ML mechanisms, highlighting advances in enhancing emission intensity, modulating spectral characteristics, and uncovering dynamic processes. Finally, the future directions and challenges for high-pressure ML research are discussed.
  • [1]

    Feng A, Smet P F 2018 Materials 11 484

    [2]

    Jha P, Chandra B P 2014 Luminescence 29 977

    [3]

    Chandra V K, Chandra B P, Jha P 2013 Appl. Phys. Lett. 103 161113

    [4]

    Bacon 1605 The Advancement of Learning (London: Henrie Tomes) pp197-201

    [5]

    Zhan T, Xu C N, Fukuda O, Yamada H, Li C 2011 Ultrason. Sonochem. 18 436

    [6]

    Chandra B P 1977 Acta. Phys. Pol. A 52 61

    [7]

    Li C S, Xu C N, Zhang L, Yamada H, Imai Y, Wang W X 2008 Key Eng. Mater. 388 265

    [8]

    Tang Y, Cai Y, Dou K, Chang J, Li W, Wang S, Sun M, Huang B, Liu X, Qiu J, Zhou L, Wu M, Zhang J C 2024 Nat. Commun. 15 3209

    [9]

    Zhang J, Pan C, Zhu Y, Zhao L, He H, Liu X, Qiu J 2018 Adv. Mater. 30 1804644

    [10]

    Zhao S, Wang Z, Ma Z, Fan F, Liu W 2020 Inorg. Chem. 59 15681

    [11]

    Pimenta M L G, Comin R, Matos M J S, Mazzoni M S C, Neves B R A, Yankowitz M 2023 Appl. Phys. Rev. 10 011313

    [12]

    Li B, Ji C, Yang W, Wang J, Yang K, Xu R, Liu W, Cai Z, Chen J, Mao H K 2018 Proc. Natl. Acad. Sci. U.S.A. 115 1713

    [13]

    Liu G, Kong L, Yang W, Mao H K 2019 Mater. Today 27 91

    [14]

    Zhao D, Wang M, Xiao G, Zou B 2020 J. Phys. Chem. Lett. 11 7297

    [15]

    Shang Y, Liu Z, Dong J, Yao M, Yang Z, Li Q, Zhai C, Shen F, Hou X, Wang L, Zhang N, Zhang W, Fu R, Ji J, Zhang X, Lin H, Fei Y, Sundqvist B, Wang W, Liu B 2021 Nature 599 599

    [16]

    Yang M, Chen J, Cao B, Gai X, Su Y, Wang X, Chen S, Guo L, Duan D, Tian F 2025 Chin.Phys. Lett. 42 067404

    [17]

    Yan X L, Feng Z B, Yu L, Liu C L 2025 Acta Phys. Sin. 74 177801 (in Chinese) [闫晓丽,冯振豹,于蓝,刘才龙 2025 74 177801]

    [18]

    Yin X T, Liao D Y, Pan D, Wang P, Liu B B 2025 Acta Phys. Sin. 74 067802 (in Chinese) [殷雪彤,廖敦渊,潘东,王鹏,刘冰冰 2025 74 067802]

    [19]

    Ye R, Wang J, Yang J, Wang X, Lei J, Zhao W, Meng Y, Xiao G, Zou B 2025 Chin. Phys. B 34 066204

    [20]

    Yu Z, Ye Y, Yang P, Wang Y, Chen L, Li C, Yuan J, Liu Z, Shen Z, Wang S, Li M, Chu C, Wang X, Li J, Wang L, Yang W, Guo Y 2025 Chin. Phys. B 34 088102

    [21]

    Yue L, Li Z, Yu L, Xu K, Liu R, Li C, Li Y, Yang D, Li X, Li Q, Liu B 2024 J. Am. Chem. Soc. 146 25245

    [22]

    Xu T, Zhai C, Liu Z, Yang X, Hu S, Shang Y, Yue L, Dong J, Liu R, Li Q, Yao M, Liu B 2025 Nat. Commun. 16 3550

    [23]

    Shi Y, Zhao W, Ma Z, Xiao G, Zou B 2021 Chem. Sci. 12 14711

    [24]

    Zhang X, Li P, Li J, Li L, Xu S, Zhang J 2025 J. Rare Earths 43 1133

    [25]

    Wu S, Wang S, Xiao B, Zhou Z, Yu H, Shao Z, Wang Y, Xiong P 2025 Laser Photonics Rev. 19 2401441

    [26]

    Zhu S, Song C, Tian Y, Ma L 2025 Mater. Res. Bull. 181 113099

    [27]

    Zhao Y, Jing X, Ma Y, He P, Zhang Q, Li H 2025 Adv. Opt. Mater. 13 2403516

    [28]

    Zheng Y L, Liu W, Koeckerling M, Rao G H, Zhao J T 2025 Solid State Commun. 399 115881

    [29]

    Ambast A K, Sharma S K 2017 Opt. Quant Electron. 49 58

    [30]

    Lan Z, Zhou R 2025 J. Alloys Compd. 1010 178099

    [31]

    Ye M, Zhou Y, Shao T, Liu H, Tao Q, Wang X, Tang R, Yue H, Li Y, Zhu P 2023 J. Phys. Chem. C 127 6543

    [32]

    Errandonea D, Popescu C, Garg A B, Botella P, Martinez G D, Pellicer P J, Rodríguez H P, Muñoz A, Cuenca G V, Sans J A 2016 Phys. Rev. B 93 035204

    [33]

    Shimizu T, Luong M V, Cadatal R M, Empizo M J F, Yamanoi K, Arita R, Minami Y, Sarukura N, Mitsuo N, Azechi H, Pham M H, Nguyen H D, Ichiyanagi K, Nozawa S, Fukaya R, Adachi S ichi, Nakamura K G, Fukuda K, Kawazoe Y, Steenbergen K G, Schwerdtfeger P 2017 Appl. Phys. Lett. 110 141902

    [34]

    Zhang L, Wang Y, Lv J, Ma Y 2017 Nat. Rev. Mater. 2 17005

    [35]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [36]

    Lin F, Li X, Chen C, Pan X, Peng D, Luo H, Jin L, Zhuang Y, Xie R J 2022 Chem. Mater. 34 5311

    [37]

    Tu S, Mizohata M, Sheng G, Liu L, Ming F, Xu C, Tu D, Zhang X, Alshareef H N 2020 Adv. Funct. Materials 30 1909843

    [38]

    Pan X, Xie R J, Zhuang Y, Mei L 2022 J. Chin. Ceram. Soc. 50 12

    [39]

    Chandra B P, Shrivastava K K 1978 J. Phys. Chem. Solids 39 939

    [40]

    Tschugaeff L 1901 Ber. Dtsch. Chem. Ges. 34 1820

    [41]

    Melvern C H, Cecil E B 1950 J. Am. Chem. Soc. 72 6

    [42]

    Chandra B P, Elyas M, Shrivastava K K, Verma R D 1980 Solid State Commun. 36 931

    [43]

    Williams G P, Turner T J 1979 Solid State Commun. 29 3

    [44]

    Chandra B P, Zink J I 1980 Phys. Rev. B 21 816

    [45]

    Chandra B P, Rathore A S 1995 Cryst. Res. Technol. 30 885

    [46]

    Akiyama M, Xu C N, Taira M, Nonaka K, Watanabe T 1999 Philos. Mag. Lett. 79 735

    [47]

    Xu C N, Watanabe T, Akiyama M, Zheng X G 1999 Appl. Phys. Lett. 74 2414

    [48]

    Xu C N, Watanabe T, Akiyama M, Zheng X G 1999 Appl. Phys. Lett. 74 1236

    [49]

    Xu C N, Watanabe T, Akiyama M, Zheng X G 1999 J. Am. Ceram. Soc. 82 2342

    [50]

    Xu C N, Watanabe T, Akiyama M, Zheng X G 1999 Mater. Res. Bull. 34 1491

    [51]

    Son C, Kim J, Kang D, Park S, Ryu C, Baek D, Jeong G, Jeong S, Ahn S, Lim C, Jeong Y, Eom J, Park J H, Lee D W, Kim D, Kim J, Ko H, Lee J 2024 Nat. Commun. 15 8003

    [52]

    Timilsina S, Jo C W, Lee K H, Sohn K, Kim J S 2024 Adv. Sci. 12 2409384

    [53]

    Chen D, Cui R, Huang C, Wang Z, Niu L 2025 ACS Appl. Mater. Interfaces 2025 17

    [54]

    Cai C, Li L, Lv X, Li H, Li T, Li P, Zhao W, Zi L, Feng S, Fan X, Zhang H, Peng D, Wang F, Qiu J, Yang Y 2025 Nat. Commun. 16 6224

    [55]

    Zhang L, Shi K, Wang Y, Su L, Yang G, Huang B, Kong J, Dong X, Wang Z L 2021 Nano Energy 85 106005

    [56]

    Wang H, Chen X, Li J, Li M, Liu K, Yang D, Peng S, Zhao T, Zhao B, Li Y, Wang Y, Lin C, Yang W 2023 ACS Appl. Mater. Interfaces 15 28204

    [57]

    Wang H, Zhao T, Li M, Li J, Liu K, Peng S, Liu X, Zhao B, Chen Y, An J, Chen X, Jiang S, Lin C, Yang W 2025 Nat. Commun. 16 548

    [58]

    Zhao T, Wang H, Jiang J, Li M, Li J, Liu K, Peng S, Zhao B, Chen Y, An J, Li Y, Jiang S, Lin C 2025 J. Phys. Chem. C 129 4715

    [59]

    Wang H, Zhao B, Zhao T, Li M, Peng S, Liu X, Chen Y, An J, Jiang S, Wang Y, Lin C, Yang W 2025 Adv. Sci. 45 1

    [60]

    Xu C N, Yamada H, Wang X, Zheng X G 2004 Appl. Phys. Lett. 84 3040

    [61]

    Huang Z, Chen B, Ren B, Tu D, Wang Z, Wang C, Zheng Y, Li X, Wang D, Ren Z, Qu S, Chen Z, Xu C, Fu Y, Peng D 2023 Adv. Sci. 10 2204925

    [62]

    Matsui H, Xu C N, Akiyama M, Watanabe T 2000 Jpn. J. Appl. Phys. 39 6582

    [63]

    Jeong S M, Song S, Joo K I, Kim J, Hwang S H, Jeong J, Kim H 2014 Energy Environ. Sci. 7 3338

    [64]

    Wang X, Dong L, Zhang H, Yu R, Pan C, Wang Z L 2015 Adv. Sci. 2 1500169

    [65]

    Zhang J C, Zhao L Z, Long Y Z, Zhang H D, Sun B, Han W P, Yan X, Wang X 2015 Chem. Mater. 27 7481

    [66]

    Zhao H, Chai X, Wang X, Li Y, Yao X 2016 J. Alloys Compd. 656 94

    [67]

    Tu D, Xu C N, Hamabe R, Liu L, Li J, Yoshida A 2017 J. Ceram. Soc. Japan 125 811

    [68]

    Tu D, Xu C, Yoshida A, Fujihala M, Hirotsu J, Zheng X 2017 Adv. Sci. 29 1606914

    [69]

    Qiu G, Fang H, Wang X, Li Y 2018 Ceram. Int. 44 15411

    [70]

    Chen H, Wu L, Bo F, Jian J, Wu L, Zhang H, Zheng L, Kong Y, Zhang Y, Xu J 2019 J. Mater. Chem. C 7 7096

    [71]

    Xiong P, Peng M, Cao J, Li X 2019 J. Am. Ceram. Soc. 102 5899

    [72]

    Chen C, Zhuang Y, Tu D, Wang X, Pan C, Xie R J 2020 Nano Energy 68 104329

    [73]

    Chen H, Bai Y, Zheng L, Wu L, Wu L, Kong Y, Zhang Y, Xu J 2020 J. Mater. Chem. C 8 6587

    [74]

    Peng D, Jiang Y, Huang B, Du Y, Zhao J, Zhang X, Ma R, Golovynskyi S, Chen B, Wang F 2020 Adv. Mater. 32 1907747

    [75]

    Yang Y, Yang X, Yuan J, Li T, Fan Y, Wang L, Deng Z, Li Q, Wan D, Zhao J, Zhang Z 2021 Adv. Opt. Mater. 9 2100668

    [76]

    Zhang J, Gao N, Li L, Wang S, Shi X, Sun M, Yan X, He H, Ning X, Huang B, Qiu J 2021 Adv. Funct. Materials 31 2100221

    [77]

    Lin F, Li X, Chen C, Pan X, Peng D, Luo H, Jin L, Zhuang Y, Xie R J 2022 Chem. Mater. 34 5311

    [78]

    Wang Y, Chen B, Zhang X, Suo H, Zheng W, Shen J, Li Y Y, Wang F 2022 Adv. Opt. Mater. 10 2102430

    [79]

    Li W, Cai Y, Chang J, Wang S, Liu J, Zhou L, Wu M, Zhang J 2023 Adv. Funct. Materials 33 2305482

    [80]

    Wang Z, Wang B, Zeng X, Peng D, Wang Y 2023 Adv. Opt. Mater. 11 2300623

    [81]

    Xiao Y, Xiong P, Zhang S, Chen K, Tian S, Sun Y, Shao P, Qin K, Brik M G, Ye S, Chen D, Yang Z 2023 Chem. Eng. J. 453 139671

    [82]

    Zhang J, An S, Pei Y, Zhang Y, Chen J 2023 Inorg. Chem. 62 4147

    [83]

    Zheng X, Cheng Y, Gao Y, Hu T, Xu J, Lin H, Wang Y 2023 J. Mater. Chem. C 11 1747

    [84]

    Kim M, Timilsina S, Jang S, Kim J, Park S 2024 Adv. Materials Technologies 9 2400255

    [85]

    Kricka L J, Stroebel J, Stanley P E 1999 Luminescence 14 215

    [86]

    Bünzli J C G, Wong K L 2018 J. Rare Earths 36 1

    [87]

    Xie Y, Li Z 2018 Chem. 4 943

    [88]

    Chandra V K, Chandra B P, Jha P 2013 J. Lumin. 138 267

    [89]

    Pan X, Zhuang Y, He W, Lin C, Mei L, Chen C, Xue H, Sun Z, Wang C, Peng D, Zheng Y, Pan C, Wang L, Xie R J 2024 Nat. Commun. 15 2673

    [90]

    Zhuang Y, Xie R 2021 Adv. Mater. 33 2005925

    [91]

    Stöcker H, Rühl M, Heinrich A, Mehner E, Meyer D C 2013 J. Electrostat. 71 905

    [92]

    Mukherjee S, Thilagar P 2019 Angew. Chem. Int. Ed. 58 7922

    [93]

    Xie Y, Li Z 2018 Chem. 4 943

    [94]

    Bai Y, Wang F, Zhang L, Wang D, Liang Y, Yang S, Wang Z 2022 Nano Energy 96 107075

    [95]

    Longchambon H 1922 Frankl. Inst 195 269

    [96]

    Wang W, Wang Z, Zhang J, Zhou J, Dong W, Wang Y 2022 Nano Energy 94 106920

    [97]

    Wang N, Pu M, Ma Z, Feng Y, Guo Y, Guo W, Zheng Y, Zhang L, Wang Z, Feng M, Li X, Wang D 2021 Nano Energy 90 106646

    [98]

    Smet P F, Viana B, Tanabe S, Peng M, Hölsä J, Chen W 2016 Opt. Mater. Express 6 1414

    [99]

    Zhang J, Pan C, Zhu Y, Zhao L, He H, Liu X, Qiu J 2018 Adv. Mater. 30 1804644

    [100]

    Wang X, Zhang H, Yu R, Dong L, Peng D, Zhang A, Zhang Y, Liu H, Pan C, Wang Z L 2015 Adv. Mater. 27 2324

    [101]

    Chandra V K, Chandra B P, Jha P 2013 Appl. Phys. Lett. 102 241105.

    [102]

    Sasakura H, Kobayashi H, Tanaka S, Mita J, Tanaka T, Nakayama H 1981 J. Appl. Phys. 52 6901

    [103]

    Fan X H, Zhang J C, Zhang M, Pan C, Yan X, Han W P, Zhang H D, Long Y Z, Wang X 2017 Opt. Express 25 14238

    [104]

    Kai H, Wong K, Tanner P A 2025 Adv. Opt. Mater. 13 2500793

    [105]

    Dobrowolska A, Bos A J J, Dorenbos P 2014 J. Phys. D: Appl. Phys. 47 335301

    [106]

    Zhang Z T, Zhang J Y 2005 Inorganic Photoluminescent Materials and Their Applications (Beijing: Chemical Industry Press) 2005 pp34—41 (in Chinses) [张中太,张俊英 2005 无机光致发光材料及应用 (北京:化学工业出版社) 第34—41页]

    [107]

    Zhang J C, Xu C N, Long Y Z 2013 Opt. Express 21 13699

    [108]

    Deng Y, Peng D, Chang S, Sun J, He J, Shan C X, Dong L 2025 J. Phys. D: Appl. Phys. 58 013002

    [109]

    Kim Y, Roy S, Jung G Y, Oh J S, Kim G W 2019 Sci. Rep. 9 15215

    [110]

    Suo H, Wang Y, Zhang X, Zheng W, Guo Y, Li L, Li P, Yang Y, Wang Z, Wang F 2023 Matter 6 2935

    [111]

    Ding Y, So B, Cao J, Wondraczek L 2022 Adv. Sci. 9 2201631

    [112]

    Fu X, Zheng S, Shi J, Zhang H 2017 J. Lumin. 192 117

    [113]

    Kim H J, Unithrattil S, Im W B 2020 Ceram. Int. 46 12138

    [114]

    S Liu, Y Zheng, D Peng, J Zhao, Z Song, Q Liu 2023 Adv. Funct. Mater. 33 2209275

    [115]

    Wang H, Zhao T, Li M, Li J, Peng S, Liu X, Zhao B, Chen Y, Lin C 2024 Chin. J. High Press. Phys. 38 1 (in Chinese) [王毫,赵婷婷,李梅,李俊龙,彭赏,刘旭强 赵博浩,陈彦龙,林传龙 2024 高压 38 1]

    [116]

    Wang B H, Li B, Liu X Q, Wang H, Jiang S, Lin C L, Yang W G 2022 Acta Phys. Sin. 71 100702 (in Chinese) [王碧涵,李冰,刘旭强,王毫,蒋升,林传龙,杨文革 2022 71 100702]

    [117]

    Zhang J C, Long Y Z, Wang X, Xu C N 2014 RSC Adv. 4 40665

    [118]

    Peng D, Jiang Y, Huang B, Du Y, Zhao J, Zhang X, Ma R, Golovynskyi S, Chen B, Wang F 2020 Adv. Mater. 32 1907747

    [119]

    Zhao F, Shao Y, Liu H, Mao Q, Yang H, Liu M, Liu Q, Zhong J 2025 Chemical Engineering Journal 512 162575

    [120]

    Wang X, Xiao Y, Xiong P, Zheng P, Wu S, Zhou Z, Xiao B, Shao P, Zhang M, Liu J, Gan J, Wang Y, Qian Q 2025 Mater. Horiz. 12 3815

    [121]

    Dou C, Liang T, Zhao M, Song Z, Ning L, Peng D, Liu Q 2024 Adv. Funct. Materials 35 2419716

    [122]

    Zhang S, Yang X, Xiao J, Li X, Peng Q, Luo S, Ba H, Zhang Y, Xu X 2024 Adv. Funct. Materials 34 2404439

    [123]

    Zhang P, Zhao X, Jia Z, Dong J, Liang T, Liu Y, Cheng Q, Ding L, Wu L, Peng D, Kong Y, Zhang Y, Xu J 2024 Adv. Mater. 2411532

    [124]

    Moon J S, Song S, Lee S K, Choi B 2013 Appl. Phys. Lett. 102 051110

    [125]

    Cheng K, Guo Z, Zhang P, Feng L, Zhou Y, Li L, Song H, Wang T, Zhao Y, Zhao L 2025 Laser Photonics Rev. 19 2401524

    [126]

    Wang Z, Meng Z, Mo S, Zhang L, Cheng P, Wang X, Ma Z 2025 J. Solid State Chem. 350 125481

    [127]

    Chandra B P, Zink J I 1980 Inorg. Chem. 19 309

    [128]

    Chandra B P 1981 Phys. Stat. Sol. (a) 64 395

    [129]

    Sweeting L M, Cashel M L, Dott M, Gingerich J M, Guido J L, Kling J A, Pippin R F, Rosenblatt M M, Rutter A M, Spence R A 1992 Mol. Cryst. Liq. Cryst. 211 389

  • [1] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究.  , doi: 10.7498/aps.74.20250042
    [2] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究.  , doi: 10.7498/aps.72.20221656
    [3] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量.  , doi: 10.7498/aps.72.20230020
    [4] 王碧涵, 李冰, 刘旭强, 王毫, 蒋升, 林传龙, 杨文革. 毫秒时间分辨同步辐射X射线衍射和高压快速加载装置及应用.  , doi: 10.7498/aps.71.20212360
    [5] 王路, 王菊, 李娜娜, 梁策, 王文丹, 何竹, 刘秀茹. 快速加压引起的硒熔体结晶行.  , doi: 10.7498/aps.70.20210253
    [6] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理.  , doi: 10.7498/aps.67.20181651
    [7] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究.  , doi: 10.7498/aps.66.039101
    [8] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , doi: 10.7498/aps.66.036203
    [9] 唐士惠, 操秀霞, 何林, 祝文军. 空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响.  , doi: 10.7498/aps.65.146201
    [10] 白俊雪, 郭伟玲, 孙捷, 樊星, 韩禹, 孙晓, 徐儒, 雷珺. GaN基高压发光二极管理想因子与单元个数关系研究.  , doi: 10.7498/aps.64.017303
    [11] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究.  , doi: 10.7498/aps.62.140702
    [12] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响.  , doi: 10.7498/aps.62.049101
    [13] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响.  , doi: 10.7498/aps.61.240701
    [14] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , doi: 10.7498/aps.60.050702
    [15] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究.  , doi: 10.7498/aps.59.4235
    [16] 周密, 张鹏, 刘铁成, 许大鹏, 姜永恒, 高淑琴, 里佐威. 压强对苯分子费米共振的影响.  , doi: 10.7498/aps.59.210
    [17] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管.  , doi: 10.7498/aps.58.529
    [18] 王秀英, 陈 莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁. 压力对Zr46.75Ti8.25Cu7.5Ni10Be27.5大块非晶合金玻璃转变和晶化动力学的影响.  , doi: 10.7498/aps.56.4004
    [19] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究.  , doi: 10.7498/aps.56.4847
    [20] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能.  , doi: 10.7498/aps.55.472
计量
  • 文章访问数:  40
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-06

/

返回文章
返回
Baidu
map