搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维过渡金属硫化物的晶相结构与物性调控

李宽 崔国梁 刘美壮 徐小志

引用本文:
Citation:

二维过渡金属硫化物的晶相结构与物性调控

李宽, 崔国梁, 刘美壮, 徐小志

Modulating Phase Structures and Physical Properties of 2D Transition Metal Dichalcogenides

LI Kuan, CUI Guoliang, LIU Meizhuang, XU Xiaozhi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 原子级厚度的二维过渡金属硫化物(2D-TMDs)材料展现出丰富的物理性质,如量子自旋霍尔效应、超导电性、电荷密度波、铁电性和铁磁性等,而受到了广泛的关注。2D-TMDs材料通过不同的层间堆叠方式和元素配位几何,可以呈现出物理性质迥异的晶相结构。通过晶相工程改变2D-TMDs材料的晶相结构是实现其电子结构、量子态及功能特性调控的有效策略。本文聚焦于热力学亚稳相2D-TMDs的制备,详细总结了利用物理化学手段诱导晶相结构转变的调控机理和直接相选择合成特定晶相结构的技术进展,及其对材料电子结构、超导电性、磁性、铁电性等物性的影响。最后,对利用晶相工程进行2D-TMDs结构和物性调控的研究现状和未来发展进行了总结和展望。
    Two-dimensional transition metal dichalcogenides (2D-TMDs) with atomic thickness have attracted extensive attention due to their various physical properties, such as quantum spin Hall effect, superconductivity, charge density waves, ferroelectricity, and ferromagnetism. Owing to different interlayer stacking configurations and elemental coordination geometries, 2D-TMDs exhibit diverse crystalline phase structures with distinct physicochemical properties. Changing the crystalline phase structures of TMDs through phase engineering can be an effective strategy for modulating the electronic structures, quantum states and functional characteristics. This review focuses on the manufacture of thermodynamically metastable-phase 2D-TMDs, providing a detailed discussion on the mechanisms of phase transition induced by physicochemical approaches and the latest advances in direct phase-selective synthesis of specific crystalline phase structures. The impacts of phase engineering on electronic structures, superconductivity, magnetism, ferroelectricity, and other physical properties are systematically elucidated. The research advances in structure and property modulation of 2D-TMDs via phase engineering are summarized. At present, a variety of approaches including alkali metal intercalation, doping, defects, strain, electric field and external stimuli (plasma, electron beam and laser irradiation) have been developed for controlled phase transition in 2D-TMDs. These physical and chemical approaches can induce local transitions of phase structure, which have the advantage of studying the process and mechanism of phase transition. However, there still exists some problems such as the introduction of impurities and defects, insufficient phase stability and difficulty in large-scale fabrication. In contrast, the phase-selective synthesis of 2D-TMDs through methods such as temperature control, precursor design, interface engineering, seed crystal induction and templated heteroepitaxial growth is more conducive to the characterization of intrinsic physical properties, large-scale fabrication and electronic device applications. Despite the significant progress made in phase-selective synthesis, there are still several important challenges and development opportunities in this field. Universal strategies and mechanisms for phase-selective synthesis still require further expansion and exploration. In the future, it is expected that through theoretical simulations, machine learning-driven predictions and the integration of advanced in-situ characterization techniques, a universal and efficient phase engineering strategy will be developed, which can be extended to more 2D-TMDs material systems.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306666

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6147

    [3]

    Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Sci. Adv. 50129

    [4]

    Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C, Liu K 2024 Science 38599

    [5]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546270

    [6]

    Li Z, Zhang H, Li G, Guo J, Wang Q, Deng Y, Hu Y, Hu X, Liu C, Qin M, Shen X, Yu R, Gao X, Liao Z, Liu J, Hou Z, Zhu Y, Fu X 2024 Nat. Commun. 151017

    [7]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20116

    [8]

    Che X, Deng Y, Fang Y, Pan J, Yu Y, Huang F 2019 Adv. Electron. Mater. 51900462

    [9]

    Zhao S, Huang J, Crépel V, Xiong Z, Wu X, Zhang T, Wang H, Han X, Li Z, Xi C, Pan S, Wang Z, Kuang G, Luo J, Shen Q, Yang J, Zhou R, Watanabe K, Taniguchi T, SacépéB, Zhang J, Wang N, Lu J, Regnault N, Han Z V 2024 Nat. Electron. 71117

    [10]

    Xia Y, Han Z, Watanabe K, Taniguchi T, Shan J, Mak K F 2025 Nature 637833

    [11]

    Han W, Zhang T, Zhao P, Yang L, Cheng M, Yang L, Shi J, Chen Y 2024 Small 202400987

    [12]

    Chang C, Zhang X, Li W, Guo Q, Feng Z, Huang C, Ren Y, Cai Y, Zhou X, Wang J, Tang Z, Ding F, Wei W, Liu K, Xu X 2024 Nat. Commun. 154130

    [13]

    Thompson E, Chu K T, Mesple F, Zhang X W, Hu C, Zhao Y, Park H, Cai J, Anderson E, Watanabe K, Taniguchi T, Yang J, Chu J H, Xu X, Cao T, Xiao D, Yankowitz M 2025 Nat. Phys. 211224

    [14]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8497

    [15]

    Septianto R D, Romagosa A P, Dong Y, Matsuoka H, Ideue T, Majima Y, Iwasa Y 2024 Nano Lett. 2413790

    [16]

    Shang C, Lei B, Zhuo W Z, Zhang Q, Zhu C S, Cui J H, Luo X G, Wang N Z, Meng F B, Ma L K, Zeng C G, Wu T, Sun Z, Huang F Q, Chen X H 2019 Phys. Rev. B 100020508

    [17]

    Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, Xie Y 2019 Adv. Mater. 311900568

    [18]

    Yan S, Qiao W, He X, Guo X, Xi L, Zhong W, Du Y 2015 Appl. Phys. Lett. 106012408

    [19]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112157601

    [20]

    Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 136222

    [21]

    Fan X L, Yang Y, Xiao P, Lau W M 2014 J. Mater. Chem. A 220545

    [22]

    Geng X, Jiao Y, Han Y, Mukhopadhyay A, Yang L, Zhu H 2017 Adv. Funct. Mater. 271702998

    [23]

    Zhang Y, Wang J, Shan L, Han B, Gao Q, Cai Z, Zhou C, Tian X, Sun R, Mai L 2024 Adv. Energy Mater. 142303464

    [24]

    Hou X, Zhang W, Peng J, Zhou L, Wu J, Xie K, Fang Z 2022 ACS Appl. Energy Mater. 511292

    [25]

    Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11482

    [26]

    Gan Y, Cho C W, Li A, Lyu J, Du X, Wen J S, Zhang L Y 2019 Chin. Phys. B 28117401

    [27]

    Voiry D, Mohite A, Chhowalla M 2015 Chem. Soc. Rev. 442702

    [28]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 711038

    [29]

    Jindal A, Saha A, Li Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N, Rhodes D A 2023 Nature 61348

    [30]

    Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, Liu G 2019 Nat. Commun. 102044

    [31]

    Deng Y, Zhao X, Zhu C, Li P, Duan R, Liu G, Liu Z 2021 ACS Nano 1512465

    [32]

    Xiao Y, Zhou M Y, Liu J L, Xu J, Fu L 2019 Sci. China Mater. 62759

    [33]

    Qian Z, Jiao L, Xie L 2020 Chin. J. Chem. 38753

    [34]

    Kim J H, Sung H, Lee G H 2024 Small Sci. 42300093

    [35]

    Huang H H, Fan X, Singh D J, Zheng W T 2020 Nanoscale 121247

    [36]

    Wang R, Yu Y, Zhou S, Li H, Wong H, Luo Z, Gan L, Zhai T 2018 Adv. Funct. Mater. 281802473

    [37]

    Chen H, Zhang J, Kan D, He J, Song M, Pang J, Wei S, Chen K 2022 Cryst. 121381

    [38]

    Wang X, Shen X, Wang Z, Yu R, Chen L 2014 ACS Nano 811394

    [39]

    Ho C H, Chen W H, Tiong K K, Lee K Y, Gloter A, Zobelli A, Stephan O, Tizei L H G 2017 ACS Nano 1111162

    [40]

    Yin X, Tang C S, Wu D, Kong W, Li C, Wang Q, Cao L, Yang M, Chang Y H, Qi D, Ouyang F, Pennycook S J, Feng Y Pi, Breese M B H, Wang S J, Zhang W, Rusydi A, Wee A T S 2019 Adv. Sci. 61802093

    [41]

    Cho S, Kang S H, Yu H S, Kim H W, Ko W, Hwang S W, Han W H, Choe D H, Jung Y H, Chang K J 20172D Mater. 4021030

    [42]

    Zheng X, Han W, Yang K, Wong L W, Tsang C S, Lai K H, Zheng F, Yang T, Lau S P, Ly T H, Yang M, Zhao J 2022 Sci. Adv. 80773

    [43]

    Li Y, Duerloo K A N, Wauson K, Reed E J 2016 Nat. Commun. 710671

    [44]

    Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, Zhang G 2017 J. Am. Chem. Soc. 13910216

    [45]

    Katagiri Y, Nakamura T, Ishii A, Ohata C, Hasegawa M, Katsumoto S, Cusati T, Fortunelli A, Iannaccone G, Fiori G, Roche S, Haruyama J 2016 Nano Lett. 163788

    [46]

    Shautsova V, Sinha S, Hou L, Zhang Q, Tweedie M, Lu Y, Sheng Y, Porter B F, Bhaskaran H, Warner J H 2019 ACS Nano 1314162

    [47]

    Empante T A, Zhou Y, Klee V, Nguyen A E, Lu I H, Valentin M D, Naghibi Alvillar S A, Preciado E, Berges A J, Merida C S, Gomez M, Bobek S, Isarraraz M, Reed E J, Bartels L 2017 ACS Nano 11900

    [48]

    Zhou L, Xu K, Zubair A, Liao A D, Fang W, Ouyang F, Lee Y H, Ueno K, Saito R, Palacios T, Kong J, Dresselhaus M S 2015 J. Am. Chem. Soc. 13711892

    [49]

    Li Z, Zhai L, Zhang Q, Zhai W, Li P, Chen B, Chen C, Yao Y, Ge Y, Yang H, Qiao P, Kang J, Shi Z, Zhang A, Wang H, Liang J, Liu J, Guan Z, Liao L, Neacșu V A, Ma C, Chen Y, Zhu Y, Lee C S, Ma L, Du Y, Gu L, Li J F, Tian Z Q, Ding F, Zhang H 2024 Nat. Mater. 231355

    [50]

    Xu X, Pan Y, Liu S, Han B, Gu P, Li S, Xu W, Peng Y, Han Z, Chen J, Gao P, Ye Y 2021 Science 372195

    [51]

    Zhang C, Liu W, Zhan F, Zhang T, Liu L, Zhang M, Xie S, Li Z, Sang H, Ge H, Yan Y, Wang R, Wang Y, Zhang Q, Tang X 2021 Adv. Funct. Mater. 312103384

    [52]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 131128

    [53]

    Sun L, Yan X, Zheng J, Yu H, Lu Z, Gao S P, Liu L, Pan X, Wang D, Wang Z, Wang P, Jiao L 2018 Nano Lett. 183435

    [54]

    Xu X, Chen S, Liu S, Cheng X, Xu W, Li P, Wan Y, Yang S, Gong W, Yuan K, Gao P, Ye Y, Dai L 2019 J. Am. Chem. Soc. 1412128

    [55]

    Song S, Keum D H, Cho S, Perello D, Kim Y, Lee Y H 2015 Nano Lett. 16188

    [56]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349625

    [57]

    Chen S Y, Naylor C H, Goldstein T, Johnson A T C, Yan J 2017 ACS Nano 11814

    [58]

    Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J, Zhang X 2017 Nature 550487

    [59]

    Lin Y C, Dumcenco D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9391

    [60]

    Yang S Z, Gong Y, Manchanda P, Zhang Y Y, Ye G, Chen S, Song L, Pantelides S T, Ajayan P M, Chisholm M F, Zhou W 2018 Adv. Mater. 301803477

    [61]

    Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 1186091

    [62]

    Chang C, Kou J Z, Xu X Z 2023 Acta Phys. Sin. 72208101(in Chinese) [常超, 寇金宗, 徐小志2023 72208101]

    [63]

    Cui G, Qi J, Liang Z, Zeng F, Zhang X, Xu X, Liu K 2024 Precis. Chem. 2330

    [64]

    He Q, Li P, Wu Z, Yuan B, Luo Z, Yang W, Liu J, Cao G, Zhang W, Shen Y Zhang P, Liu S, Shao G, Yao Z 2019 Adv. Mater. 311901578

    [65]

    Zheng P, Wei W, Liang Z, Qin B, Tian J, Wang J, Qiao R, Ren Y, Chen J, Huang C, Zhou X, Zhang G, Tang Z, Yu D, Ding F, Liu K, Xu X 2023 Nat. Commun. 14592

    [66]

    Zhang J, Wang F, Shenoy V B, Tang M, Lou J 2020 Mater. Today 40132

    [67]

    Sung J H, Heo H, Si S, Kim Y H, Noh H R, Song K, Kim J, Lee C S, Seo S Y, Kim D H, Kim H K, Yeom H W, Kim T H, Choi S Y, Kim J S, Jo M H 2017 Nat. Nanotechnol. 121064

    [68]

    Cho D, Bastiaans K M, Chatzopoulos D, Gu G D, Allan M P 2019 Nature 571541

    [69]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515245

    [70]

    Zhou J, Zhu C, Zhou Y, Dong J, Li P, Zhang Z, Wang Z, Lin Y C, Shi J, Zhang R, Zheng Y, Yu H, Tang B, Liu F, Wang L, Liu L, Liu G B, Hu W, Gao Y, Yang H, Gao W, Lu L, Wang Y, Suenaga K, Liu G, Ding F, Yao Y, Liu Z 2023 Nat. Mater. 22450

    [71]

    Kang L, Ye C, Zhao X, Zhou X, Hu J, Li Q, Liu D, Das C M, Yang J, Hu D, Chen J, Cao X, Zhang Y, Xu M, Di J, Tian D, Song P, Kutty G, Zeng Q, Fu Q, Deng Y, Zhou J, Ariando A, Miao F, Hong G, Huang Y, Pennycook S J, Yong K T, Ji W, Wang X R, Liu Z 2020 Nat. Commun. 113729

    [72]

    Narangammana L K, Liu X, Nie Y F, Rueckert F J, Budnick J I, Hines W A, Gu G, Wells B O 2013 Appl. Phys. Lett. 103102604

    [73]

    Maheshwari P K, Reddy V R, Gahtori B, Awana V P S 2018 Mater. Res. Express 5126002

    [74]

    Hu D, Ye C, Wang X, Zhao X, Kang L, Liu J, Duan R, Cao X, He Y, Hu J, Li S, Zeng Q, Deng Y, Yin P F, Ariando A, Huang Y, Zhang H, Wang X R, Liu Z 2021 Nano Lett. 215338

    [75]

    Lian C S, Si C, Duan W 2018 Nano Lett. 182924

    [76]

    Liu L, Yang H, Huang Y, Song X, Zhang Q, Huang Z, Hou Y, Chen Y, Xu Z, Zhang T, Wu X, Sun J, Huang Y, Zheng F, Li X, Yao Y, Gao H J, Wang Y 2021 Nat. Commun. 121978

    [77]

    Zhang Q, Hou Y, Zhang T, Xu Z, Huang Z, Yuan P, Jia L, Yang H, Huang Y, Ji W, Qiao J, Wu X, Wang Y 2021 ACS Nano 1516589

    [78]

    Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8321

    [79]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H-Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 1292

    [80]

    Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, Mao W H, Zhu G L, LüJ T, Fu Y S 2021 Nano Lett. 217005

    [81]

    Liu L, Wu J, Wu L, Ye M, Liu X, Wang Q, Hou S, Lu P, Sun L, Zheng J, Xing L, Gu L, Jiang X, Xie L, Jiao L 2018 Nat. Mater. 171108

    [82]

    Calandra M 2013 Phys. Rev. B 88245428

    [83]

    Enyashin A N, Seifert G 2012 Comput. Theor. Chem. 99913

    [84]

    Mu W, Ke C, Huangfu C, Dong J, Zhou Y, Zheng J, Yue S, Li J, Liu S, Jiao L 2025 Adv. Mater. 372504941

    [85]

    HuangFu C, Zhou Y, Ke C, Liao J, Wang J, Liu H, Liu D, Liu S, Xie L, Jiao L 2024 ACS Nano 1814708

    [86]

    Lai Z, He Q, Tran T H, Repaka D V M, Zhou D D, Sun Y, Xi S, Li Y, Chaturvedi A, Tan C, Chen B, Nam G H, Li B, Ling C, Zhai W, Shi Z, Hu D, Sharma V, Hu Z, Chen Y, Zhang Z, Yu Y, Wang X R, Ramanujan R V, Ma Y, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 201113

    [87]

    Cheng F, Hu Z, Xu H, Shao Y, Su J, Chen Z, Ji W, Loh K P 2019 ACS Nano 132316

    [88]

    Liu M, Gou J, Liu Z, Chen Z, Ye Y, Xu J, Xu X, Zhong D, Eda G, Wee A T S 2024 Nat. Commun. 151765

    [89]

    Liu M, Huang Y L, Gou J, Liang Q, Chua R, Arramel, Duan S, Zhang L, Cai L, Yu X, Zhong D, Zhang W, Wee A T S 2021 J. Phys. Chem. Lett. 127752

  • [1] 丁华平, 刘李晨, 邵里良, 周靖, 左定荣, 柯海波, 汪卫华. 序调控工程创制高频非晶基软磁材料研究进展.  , doi: 10.7498/aps.74.20250585
    [2] 汪成阳, 李月鑫, 何沿沿, 李美, 钟轮, 接文静. 低温化学气相沉积法可控合成二维铁电α-In2Se3.  , doi: 10.7498/aps.74.20251070
    [3] 赵世杰, 马浩南, 刘霞. 基于扫描热探针技术的二维材料物性调控研究进展.  , doi: 10.7498/aps.74.20241590
    [4] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测.  , doi: 10.7498/aps.72.20221374
    [5] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展.  , doi: 10.7498/aps.72.20222266
    [6] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强.  , doi: 10.7498/aps.71.20212358
    [7] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带.  , doi: 10.7498/aps.71.20220326
    [8] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , doi: 10.7498/aps.71.20220388
    [9] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控.  , doi: 10.7498/aps.71.20220638
    [10] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控.  , doi: 10.7498/aps.71.20220085
    [11] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控.  , doi: 10.7498/aps.71.20220727
    [12] 韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧. 表面原子操纵与物性调控研究进展.  , doi: 10.7498/aps.71.20220405
    [13] 王丹, 邱荣, 陈博, 包南云, 康冬冬, 戴佳钰. 二维冰相I的电子和光学性质.  , doi: 10.7498/aps.70.20210708
    [14] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控.  , doi: 10.7498/aps.70.20210936
    [15] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , doi: 10.7498/aps.70.20202146
    [16] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , doi: 10.7498/aps.69.20200452
    [17] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究.  , doi: 10.7498/aps.68.20181597
    [18] 黄立, 李更, 张余洋, 鲍丽宏, 郇庆, 林晓, 王业亮, 郭海明, 申承民, 杜世萱, 高鸿钧. 低维原子/分子晶体材料的可控生长、物性调控和原理性应用.  , doi: 10.7498/aps.67.20180846
    [19] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件.  , doi: 10.7498/aps.66.218503
    [20] 张永健, 陈仙辉, 陈兆甲, 曹烈兆, 戚伯云. Bi-1212相和Bi-1222相铜氧化合物的合成和超导电性.  , doi: 10.7498/aps.44.922
计量
  • 文章访问数:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-14

/

返回文章
返回
Baidu
map