搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维单层FeGa2S4电子结构及光学性质调控研究

宋蕊 程润 冯凯 姚佳 王必利 鲁梦洁 安明

引用本文:
Citation:

二维单层FeGa2S4电子结构及光学性质调控研究

宋蕊, 程润, 冯凯, 姚佳, 王必利, 鲁梦洁, 安明
cstr: 32037.14.aps.75.20251180

Electronic structure and optical property regulation of two-dimensional monolayer FeGa2S4

SONG Rui, CHENG Run, FENG Kai, YAO Jia, WANG Bili, LU Mengjie, AN Ming
cstr: 32037.14.aps.75.20251180
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 针对高速电子器件与光电器件的发展需求, 探索并设计具有优异载流子输运特性的二维半导体材料已成为该领域的核心科学问题. 本文基于密度泛函理论, 采用第一性原理计算系统地探究了面内应力对单层FeGa2S4材料输运性质及光学性质的调控规律. 结果表明, FeGa2S4易于剥离, 其单层结构具有较好的动力学、热力学稳定性和面内各向同性的机械性能, 较低的杨氏模量使其在外部应力下易于形变. 与母相块材相似, 单层FeGa2S4也是一种间接带隙半导体(能隙为1.65 eV), 在单轴应力(应变范围±5%)调控下, 空穴迁移率基本保持不变(约103 cm2·V–1·s–1), 电子迁移率(+5%应变)则提升超过一个数量级. 双轴拉伸应力则能够有效提升材料在可见光范围内的光捕获能力. 研究结果表明单层FeGa2S4在高速电子和柔性光电器件领域具有较大的应用前景.
    This study aims to explore two-dimensional semiconductor materials with superior carrier transport properties to meet the growing demands of high-speed electronics and optoelectronic devices, focusing on evaluating the feasibility of monolayer FeGa2S4 as a candidate material through systematic theoretical investigations. First-principles calculations are used to analyze the exfoliation energy of FeGa2S4 bulk crystal, as well as the structural stability, mechanical properties, and strain-dependent optoelectronic behavior of its monolayer counterpart. Strain engineering strategies, including uniaxial and biaxial strain, are used to assess carrier mobility modulation and spectral response. Our calculation results indicate that monolayer FeGa2S4 is an indirect bandgap semiconductor (Eg = 1.65 eV) with low stiffness (Young’s modulus up to 151.6 GPa) and high flexibility (Poisson’s ratio less than 0.25), demonstrating exceptional thermodynamic stability. Under +5% uniaxial tensile strain, its electron mobilities along x and y directions dramatically increases to 5402.4 cm2·V–1·s–1 and 4164.0 cm2·V–1·s–1, fivefold higher than its hole mobility. Biaxial strain outperforms uniaxial strain in bandgap modulation and induces a systematic redshift in optical spectra, significantly enhancing visible-light harvesting efficiency. This work reveals that monolayer FeGa2S4 is a promising high-mobility photoactive material for next-generation solar cells and optoelectronics. The strain-mediated control of electronic and optical properties provides a theoretical framework for optimizing 2D semiconductors and critical guidance for experimental synthesis and device engineering. These findings highlight the potential of materials in advancing energy conversion technology and photonic applications.
      通信作者: 宋蕊, snoopysr@163.com ; 安明, amorn@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274070)资助的课题.
      Corresponding author: SONG Rui, snoopysr@163.com ; AN Ming, amorn@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274070).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222Google Scholar

    [3]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [5]

    Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, de Heer W A 2004 J. Phys. Chem. B 108 19912Google Scholar

    [6]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [7]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403Google Scholar

    [8]

    Liu B, Zhou K 2019 Prog. Mater. Sci. 100 99Google Scholar

    [9]

    Cai Y Q, Zhang G, Zhang Y W 2014 Sci. Rep. 4 6677Google Scholar

    [10]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [11]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V , Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [12]

    Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B, Xiao K 2013 Nano Lett. 13 1649Google Scholar

    [13]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [14]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [15]

    Song Y, Pan J B, Zhang Y F, Yang H T, Du S X 2021 J. Phys. Chem. Lett. 12 6007Google Scholar

    [16]

    Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E, Liu W, Chen Z F, Zeng H B 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [17]

    Guo Z L, Zhou J, Zhua L G, Sun Z M 2016 J. Mater. Chem. A 4 11446Google Scholar

    [18]

    宋蕊, 王必利, 冯凯, 王黎, 梁丹丹 2022 71 037101Google Scholar

    Song R, Wang B L, Feng K, Wang L, Liang D D 2022 Acta Phys. Sin. 71 037101Google Scholar

    [19]

    Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L, Ajayan P M 2020 Nature 577 492Google Scholar

    [20]

    Kim Y, Woo W J, Kim D, Lee S, Chung S M, Park J, Kim H 2021 Adv. Mater. 33 2005907Google Scholar

    [21]

    Rong C, Su T, Li Z K, Chu T S, Zhu M L, Yan Y B, Zhang B W, Xuan F Z 2024 Nat. Commun. 15 1566Google Scholar

    [22]

    Victorin J, Razpopov A, Higo T, Dziobek-Garrett R, Kempa T J, Nakatsuji S, Valentí R, Drichko N 2024 Sci. Rep. 14 28040Google Scholar

    [23]

    Dogguy-Smiri L, Dung N H, Pardo M P 1980 Mater. Res. Bull. 15 861Google Scholar

    [24]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [28]

    Sharan A, Sajjad M, Singh D J, Singh N 2022 Phys. Rev. Mater. 6 094005Google Scholar

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [30]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [31]

    Myoung B R, Kim S J, Kim C S 2008 J Korean Phys. Soc. 53 750Google Scholar

    [32]

    Zacharia R, Ulbricht H, Hertel T 2004 Phys. Rev. B 69 155406Google Scholar

    [33]

    Pavone P, Karch K, Schiitt O, Strauch D, Windl W, Giannozzi P, Baroni S 1993 Phys. Rev. B 48 3156Google Scholar

    [34]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [35]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [36]

    Huang Z, Lu N, Wang Z F, Xu S H, Guan J, Hu Y W 2022 Nano Lett. 22 7734Google Scholar

    [37]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [38]

    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

  • 图 1  (a) 体相FeGa2S4晶体结构的侧视图, 黑框内为其块材的一个原胞; (b) FeGa2S4的剥离能

    Fig. 1.  (a) Side view of FeGa2S4 bulk, its primitive cell is marked with a black frame; (b) the exfoliation energy of FeGa2S4

    图 2  单层FeGa2S4的(a)俯视图和(b)侧视图; (c) 单胞的声子谱; (d) 3×3×1超晶胞结构分子动力学模拟

    Fig. 2.  (a) Top and (b) side views of FeGa2S4 monolayer; (c) phonon dispersion curves of FeGa2S4 monolayer unit cell; (d) evolution of total energy and snapshots of FeGa2S4 monolayer 3×3×1 supercell from AIMD simulations.

    图 3  FeGa2S4单层面内杨氏模量(a)和泊松比(b)

    Fig. 3.  Young’s moduli (a) and Poisson’s ratio (b) of FeGa2S4 monolayer.

    图 4  FeGa2S4单层的电子能带结构和分波态密度

    Fig. 4.  Band structure and PDOS of monolayer FeGa2S4.

    图 5  (a) xy输运方向的定义; (b) 单层FeGa2S4的载流子迁移率应变响应特性

    Fig. 5.  (a) Definition of transport directions x and y; (b) carrier mobility of monolayer FeGa2S4 under uniaxial strain.

    图 6  单层FeGa2S4超胞的导带底局域电荷密度示意图及轨道投影能带图

    Fig. 6.  Partial charge densities of the conduction band minimum and projected band structure of FeGa2S4 monolayer supercell.

    图 7  单层FeGa2S4带隙随面内单双轴应变变化曲线

    Fig. 7.  Variation of band gap of FeGa2S4 monolayer with various in-plane strain.

    图 8  双轴应变εbi = 0%, ±3%和+5%时, 单层FeGa2S4的吸收率、反射率和透射率

    Fig. 8.  Absorption, reflectance and transmission of monolayer FeGa2S4 under εbi = 0%, ±3% and +5%.

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222Google Scholar

    [3]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [5]

    Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, de Heer W A 2004 J. Phys. Chem. B 108 19912Google Scholar

    [6]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [7]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403Google Scholar

    [8]

    Liu B, Zhou K 2019 Prog. Mater. Sci. 100 99Google Scholar

    [9]

    Cai Y Q, Zhang G, Zhang Y W 2014 Sci. Rep. 4 6677Google Scholar

    [10]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [11]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V , Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [12]

    Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B, Xiao K 2013 Nano Lett. 13 1649Google Scholar

    [13]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [14]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [15]

    Song Y, Pan J B, Zhang Y F, Yang H T, Du S X 2021 J. Phys. Chem. Lett. 12 6007Google Scholar

    [16]

    Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E, Liu W, Chen Z F, Zeng H B 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [17]

    Guo Z L, Zhou J, Zhua L G, Sun Z M 2016 J. Mater. Chem. A 4 11446Google Scholar

    [18]

    宋蕊, 王必利, 冯凯, 王黎, 梁丹丹 2022 71 037101Google Scholar

    Song R, Wang B L, Feng K, Wang L, Liang D D 2022 Acta Phys. Sin. 71 037101Google Scholar

    [19]

    Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L, Ajayan P M 2020 Nature 577 492Google Scholar

    [20]

    Kim Y, Woo W J, Kim D, Lee S, Chung S M, Park J, Kim H 2021 Adv. Mater. 33 2005907Google Scholar

    [21]

    Rong C, Su T, Li Z K, Chu T S, Zhu M L, Yan Y B, Zhang B W, Xuan F Z 2024 Nat. Commun. 15 1566Google Scholar

    [22]

    Victorin J, Razpopov A, Higo T, Dziobek-Garrett R, Kempa T J, Nakatsuji S, Valentí R, Drichko N 2024 Sci. Rep. 14 28040Google Scholar

    [23]

    Dogguy-Smiri L, Dung N H, Pardo M P 1980 Mater. Res. Bull. 15 861Google Scholar

    [24]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [28]

    Sharan A, Sajjad M, Singh D J, Singh N 2022 Phys. Rev. Mater. 6 094005Google Scholar

    [29]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [30]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [31]

    Myoung B R, Kim S J, Kim C S 2008 J Korean Phys. Soc. 53 750Google Scholar

    [32]

    Zacharia R, Ulbricht H, Hertel T 2004 Phys. Rev. B 69 155406Google Scholar

    [33]

    Pavone P, Karch K, Schiitt O, Strauch D, Windl W, Giannozzi P, Baroni S 1993 Phys. Rev. B 48 3156Google Scholar

    [34]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [35]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [36]

    Huang Z, Lu N, Wang Z F, Xu S H, Guan J, Hu Y W 2022 Nano Lett. 22 7734Google Scholar

    [37]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [38]

    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

  • [1] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响.  , 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质(已撤稿.  , 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [5] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究.  , 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究.  , 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究.  , 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究.  , 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究.  , 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算.  , 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [15] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究.  , 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [17] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究.  , 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究.  , 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  250
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-31
  • 修回日期:  2025-10-09
  • 上网日期:  2025-12-16
  • 刊出日期:  2026-01-05

/

返回文章
返回
Baidu
map