-
本研究基于磁热效应的绿色磁制冷技术,并以Ni-Mn-Ga Heusler合金为对象,系统探索其作为磁制冷工质的潜力。为阐明富Mn成分对合金磁性与磁热性能的调控机制,采用第一性原理计算与蒙特卡洛模拟相结合的多尺度方法,重点分析Mn原子分别占据Ni与Ga位时,对合金微观结构、原子磁矩、交换作用及宏观磁热行为的影响。结果表明,Mn占位方式对磁性能具有关键调控作用: Mn占据Ni位会降低总磁矩与居里温度,并减小磁熵变;而Mn占据Ga位则显著提升总磁矩与磁熵变,其中Ni8Mn7Ga1合金在2 T磁场下的最大磁熵变高达2.32 J·kg-1·K-1,远高于化学计量比Ni8Mn4Ga4合金。态密度与交换作用分析进一步表明,Mn含量变化可调控其在费米能级附近的电子结构,优化轨道杂化与铁磁交换作用,影响磁相变行为。临界指数分析显示合金中磁相互作用具有长程特性,并随成分变化趋近于平均场行为。本工作从微观层面建立了“成分-结构-磁性-磁热性能”之间的构效关系,为设计高性能、低滞后磁制冷材料提供了理论依据。
-
关键词:
- Ni-Mn-Ga 合金 /
- 磁热效应 /
- 二级磁相变 /
- 蒙特卡洛模拟
This study investigates the magnetocaloric effect-based green magnetic refrigeration technology, with a focus on Ni-Mn-Ga Heusler alloys as promising magnetic refrigerant candidates. To elucidate the role of Mn-rich composition in regulating the magnetic and magnetocaloric properties, a multi-scale computational approach integrating first-principles calculations and Monte Carlo simulations was adopted. This methodology enables a detailed analysis of how Mn atoms occupying Ni versus Ga sites influence the alloy’s microstructure, atomic magnetic moments, exchange interactions, and macroscopic magnetocaloric response. The results demonstrate that Mn site occupancy critically governs the magnetic performance: occupation of Ni sites reduces the total magnetic moment and Curie temperature, thereby diminishing the magnetic entropy change; in contrast, Mn occupying Ga sites markedly enhances both the total magnetic moment and the magnetic entropy change. Notably, the Ni8Mn7Ga1 alloy achieves a maximum magnetic entropy change of 2.32 J·kg-1·K-1 under a 2 T magnetic field, substantially surpassing that of the stoichiometric Ni8Mn4Ga4 alloy. Further electronic structure analysis reveals that Mn content variation modulates the density of states near the Fermi level, optimizes orbital hybridization and ferromagnetic exchange interactions, and consequently tailors the magnetic phase transition behavior. Critical exponent analysis confirms that the magnetic interactions are long-range in nature and tend toward mean-field behavior with compositional changes. By establishing a clear “composition-structure-magnetism-magnetocaloric performance” relationship at the atomic scale, this work provides theoretical foundations for designing high-performance, low-hysteresis magnetic refrigeration materials.-
Keywords:
- Ni-Mn-Ga alloy /
- magnetocaloric effect /
- second-order magnetic phase transition /
- Monte Carlo simulation
-
[1] Dong Y, Coleman M, Miller S A 2021 Annu. Rev. Environ. Resour. 46 59
[2] Zimm C, Jastrab C, Sternberg A, Pecharsky V K, Gschneidner Jr K A, Osborne M, Anderson I 1998 Adv. Cryog. Eng. 43 1759
[3] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[4] Provenzano V, Shapiro A J, Shull R D 2004 Nature (London) 429 853
[5] Tegus O, Brück E, Buschow K H J, de Boer R D 2002 Nature (London) 415 150
[6] Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇,沈俊,胡凤霞,孙继荣,沈保根 2016 65 217502]
[7] Li R, Shen J, Zhang Z B, Li Z X, Mo Z J, Gao X Q, Hai P, Fu Q 2024 Acta Phys. Sin. 73 037501 (in Chinese) [李瑞,沈俊,张志鹏,李振兴,莫兆军,高新强,海鹏,付琪 2024 73 037501]
[8] Tickle R, James R D 1999 J. Magn. Magn. Mater. 195 627
[9] Chen J, Hana Z, Qiana B, Zhang P, Wang D, Duc Y 2011 J. Magn. Magn. Mater. 323 248
[10] Sharma V K, Chattopadhyay M K, Kumar R, Ganguli T, Tiwari P, Roy S B 2007 J. Phys.: Conden. Matter 19 496207
[11] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675
[12] Fujieda S, Fujita A, Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[13] Shen Q, van Rooij F, Zhang Z, Hao W, Dugulan A I, van Dijk N, Brück E, Li L 2026 J. Mater. Sci. Technol. 254 196
[14] Na Y, Wang Z, Kong Z, Xie Y, Zhang Y 2025 J. Rare Earth. https://doi.org/10.1016/j.jre.2025.09.044
[15] Campos A, Rocco D, Carvalho A, Caron L, Coelho A, Gama S, Silva L, Gandra F, Santos A, Cardoso L, von Ranke P J, Oliveira N A 2006 Nat. Mater. 5 802
[16] Gschneidner Jr K A, Pecharsky V V, Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[17] Gshneidner Jr K A, Pecharsky V V 2008 Int. J. Refrig. 31 945
[18] Planes A, Mañosa L, Acet M 2009 J. Phys.: Condens. Matter 21 233201
[19] Franco V, Blázquez J S, Ingalge B, Conde A 2012 Ann. Rev. Mater. Res. 42 305
[20] de Oliveira N A, von Ranke P J, Troper A 2014 Int. J. Refrig. 37 237
[21] Dunand D C, Mullner P 2011 Adv. Mater. 23 216
[22] Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Magn. 49 295
[23] Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Mater. Sci. Forum 684 1
[24] Datta S, Dheke S S, Panda S K, Rout S N, Das T, Kar M 2023 J. Alloys Compd. 968 172251
[25] Fabbrici S, Porcari G, Cugini F, Solzi M, Kamarad J, Arnold Z, Cabassi R, Albertini F 2014 Entropy 16 2204
[26] Schleicher B, Klar D, Ollefs K, Diestel A, Walecki D, Weschke E, Schultz L, Nielsch K, Fähler S, Wende H, Gruner M E 2017 J. Phys. D: Appl. Phys. 50 465005
[27] Diestel A, Niemann R, Schleicher B, Nielsch K, Fähler S 2018 Energy Technol. 6 1463
[28] Schröter M, Herper H C, Grünebohm A 2022 J. Phys. D: Appl. Phys. 55 025002
[29] Fu S, Gao J, Wang K, Ma L, Zhu J 2024 Intermetallics 169 108276
[30] Mendonça A A, Ghivelder L, Bernardo P L, Cohen L F, Gomes A M 2023 J. Alloys Compd. 938 168444
[31] Sarkar S K, Babu P D, Biswas A, Siruguri V, Krishnan M 2016 J. Alloys Compd. 670 281
[32] Zhang X, Qian M, Zhang Z, Wei L, Geng L, Sun J 2016 Appl. Phys. Lett. 108 052401
[33] Gràcia-Condal A, Planes A, Mañosa L, Wei Z, Guo J, Soto-Parra D, Liu J 2022 Phys. Rev. Mater. 6 084403
[34] Liu Y, Zhang X, Xing D, Shen H, Chen D, Liu J, Sun J 2014 J. Alloys Compd. 616 184
[35] Liu Y, Luo L, Zhang X, Shen H, Liu J, Sun J, Zu N 2019 Intermetallics 112 106538
[36] Qian M, Zhang X, Wei L, Martin P, Sun J, Geng L, Scott T B, Peng H X 2018 Sci. Rep. 8 16574
[37] Qian M, Zhang X, Jia Z, Wan, X, Geng L 2018 Mater. Des. 148 115
[38] Zhang Y C, Franco V, Wang Y F, Peng H X, Qin F X 2022 J. Alloys Compd. 918 165664
[39] Chiu W T, Sratong-on P, Chang T F M, Tahara M, Sone M, Chernenko V, Hosoda H 2023 J. Mater. Res. Technol. 23 131
[40] Zhang Y, Gao Y, Franco V, Yin H, Peng H X, Qin F 2023 Sci. China Mater. 66 3670
[41] Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460
[42] Pasquale M, Sasso C P, Lewis L H, Giudici L, Lograsso T, Schlagel D 2005 Phys. Rev. B 72 094435
[43] Miroshkina O N, Sokolovskiy V V, Zagrebin M A, Taskaev S V, Buchelnikov V D 2020 Phys. Solid State 62 785
[44] Brown P J, Crangle J, Kanomata T, Matsumoto M, Neumann K U, Ouladdiaf B, Ziebeck K R A 2002 J. Phys.: Condens. Matter 14 10159
[45] Hafner J 2000 Acta Mater. 48 71
[46] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[47] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[48] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[49] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[50] Blöchl P E 1994 Phys. Rev. B 50 17953
[51] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[52] Ebert H, Dreysee H 1999 The Use of the LMTO Method (Lecture Notes in Physics) (Berlin: Springer) 535 pp 191-246
[53] Ebert H 2005 The Munich SPR-KKR Package (Version 8.6) SPRKKR 8.6 Manual
[54] Minár J, Perlov A, Ebert H, Hashizume H 2005 J. Phys.: Condens. Matter 17 5785
[55] Zhang C, Zhang Z, Wang D, Hu Y 2024 Appl. Phys. Lett. 124 082407
[56] Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
[57] Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325
[58] Pecharsky V K, Gschneidner K A 2000 Annu. Rev. Mater. Sci. 30 387
[59] Hu Y, Wang Y, Li Z, Chi X, Lu Q, Hu T, Liu Y, Du A, Shi F 2018 Appl. Phys. Lett. 113 133902
[60] Hu Y, Hu T, Chi X, Wang Y, Lu Q, Yu L, Li R, Liu Y, Du A, Li Z, Shi F 2019 Appl. Phys. Lett. 114 023903
[61] Hao F, Hu Y 2020 Appl. Phys. Lett. 117 063902
[62] Zhang J, Hu Y 2021 Appl. Phys. Lett. 119 213903
[63] Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334
[64] Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512
[65] Franco V, Conde A, Sidhaye D, Prasad B L V, Poddar P, Srinath S, Phan M H, Srikanth H 2010 J. Appl. Phys. 107 09A902
[66] Liu Y, Petrovic C 2018 Phys. Rev. B 97 174418
计量
- 文章访问数: 37
- PDF下载量: 3
- 被引次数: 0








下载: