搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造宽温区La(Fe, Si)13基梯度合金的磁热性能

谢珑珑 秦亚洲 孙佳怡 乔凯明 刘剑 张虎

引用本文:
Citation:

增材制造宽温区La(Fe, Si)13基梯度合金的磁热性能

谢珑珑, 秦亚洲, 孙佳怡, 乔凯明, 刘剑, 张虎

Magnetocaloric properties of additively manufacturing La(Fe, Si)13-based gradient alloys with wide temperature range

XIE Longlong, QIN Yazhou, SUN Jiayi, QIAO Kaiming, LIU Jian, ZHANG Hu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 磁制冷技术具有绿色环保和节能高效等优点, 被认为是有望取代气体压缩制冷技术的新一代制冷技术. 但目前磁制冷材料往往相变温区过窄(≤10 K), 需多个成分的材料叠加才能满足实际的制冷温跨. 本研究选择典型的La(Fe, Si)13基磁制冷材料, 创新采用梯度激光粉末床熔融技术, 3D打印出水平成分梯度的La0.70Ce0.30Fe11.65–xMnxSi1.35 (Mn含量从0—0.64连续变化)合金. 系统表征其显微结构、磁学性能及磁热效应可知, 该技术可实现成分沿粉末床平面的可控梯度分布与高通量制备, 从而实现了该梯度合金居里温度从134—174 K宽温区的连续变化. 随Mn含量增加, 合金相变从弱一级相变逐渐变为二级相变, 磁熵变曲线峰型从“尖而高”变为“宽而平”, 半高宽温区扩大至83.3 K, 使得梯度合金始终保持较高的制冷能力RC (~130 J/kg, 3 T). 本研究通过梯度增材制造突破传统材料制备与性能瓶颈, 为磁制冷材料高通量制备与性能优化提供全新技术路径.
    Magnetic refrigeration technology, featuring environmental friendliness, energy efficiency and high performance, is recognized as a next-generation refrigeration technology with the potential to replace gas compression refrigeration technology. However, current magnetic refrigeration materials typically exhibit an excessively narrow phase transition temperature range (≤10 K), thus necessitating the stacking of materials with multiple compositions to meet the practical refrigeration temperature span. In this study, the typical La(Fe, Si)13-based magnetic refrigeration material is selected, and an innovative gradient laser powder bed fusion technology is adopted to obtain 3D-print La0.70Ce0.30Fe11.65–xMnxSi1.35 alloys with horizontal compositional gradients (where the Mn content varies continuously from 0 to 0.64). Systematic characterization of their microstructures, magnetic properties, and magnetocaloric effects indicates that this technology enables a controllable gradient distribution of compositions along the powder bed plane and high-throughput preparation, thereby achieving a continuous variation of the Curie temperature of the gradient alloy over a wide temperature range from 134 K to 174 K. With the increase of Mn content, the phase transition of the alloy gradually changes from a weak first-order phase transition to a second-order phase transition, and the peak shape of the magnetic entropy change curve shifts from “sharp and high” to “broad and flat”. The full width at half maximum of the temperature range is extended to 83.3 K, allowing the gradient alloy to maintain high refrigeration capacity (RC ~130 J/kg, 3 T) at all time. This study breaks through the bottlenecks of traditional material preparation and performance via gradient additive manufacturing, providing a novel technical pathway for achieving high-throughput preparation and performance optimization of magnetic refrigeration materials.
  • 图 1  La(Fe, Si)13原始粉末的形状和尺寸分布 (a), (b) Mn0和Mn0.64粉末的SEM图像; (c), (d) Mn0和Mn0.64粉末的粒径分布结果

    Fig. 1.  Morphology and size distribution of as-prepared La(Fe, Si)13 powders: (a), (b) SEM images of Mn0 and Mn0.64 powders; (c), (d) particle size distribution results of Mn0 and Mn0.64 powders.

    图 2  打印态CGAs的制备 (a) 制备流程图; (b) 不同形状梯度样品的宏观图像; (c) 沿梯度方向切片所得的62个样品, 编号为S1—S62

    Fig. 2.  Preparation of as-printed CGAs: (a) Preparation flow chart; (b) macrographs of gradient samples with different shapes; (c) 62 samples obtained by slicing along the gradient direction, numbered as S1—S62.

    图 3  退火态CGAs的结构和成分演变 (a) XRD图谱; (b) 通过Rietveld精修得到的对应晶格参数; (c) EDS点扫描得到的1:13相Fe和Mn含量

    Fig. 3.  Microstructural and compositional evolution of as-annealed CGAs: (a) XRD patterns; (b) corresponding lattice parameters via Rietveld refinement; (c) Fe and Mn contents of the 1:13 phase by EDS point scanning.

    图 4  退火态CGAs的磁相变 (a) 10 mT外磁场下的M-T曲线; (b) dM/dT曲线; (c) 居里温度

    Fig. 4.  Magnetic phase transition temperatire of as-annealed CGAs: (a) M-T curves under magnetic field of 10 mT; (b) dM/dT curves; (c) Curie temperature results.

    图 5  退火态CGAs在0—3 T磁场下测得的磁化等温线

    Fig. 5.  Magnetization isotherms of as-annealed CGAs measured under a magnetic field of 0–3 T.

    图 6  3 T磁场下退火态CGAs的磁熵变随温度的变化曲线

    Fig. 6.  Temperature dependence of |ΔSM| for CGAs under a magnetic field change of 3 T.

    Baidu
  • [1]

    Xie L L, Liang C G, Qin Y Z, Zhou H, Yu Z Y, Chen H D, Naeem M Z, Qiao K M, Wen Y J, Zhang B C, Wang G F, Li X, Liu J, Franco V, Chu K, Yi M, Zhang H 2024 Adv. Func. Mater. 35 2414441

    [2]

    张虎, 邢成芬, 龙克文, 肖亚宁 陶坤, 王利晨, 龙毅 2018 67 207501Google Scholar

    Zhang H, Xing C F, Long K W, Xiao Y N, Tao K, Wang L C, Long Y 2018 Acta Phys. Sin. 67 207501Google Scholar

    [3]

    Zhou H, Tao K, Chen B, Chen H D, Qiao K M, Yu Z Y, Cong J Z, Huang R J, Taskaev S V, Zhang H 2022 Acta Mater. 229 117830Google Scholar

    [4]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Müllner P 2009 Nature Mater. 8 863Google Scholar

    [5]

    Zhang H, Li Y W, Liu E K, Tao K, Wu M L, Wang Y X, Zhou H B, Xue Y J, Cheng C, Yan T, Long K W, Long Y 2017 Mater. Design 114 531Google Scholar

    [6]

    Guo W H, Miao X F, Cui J Y, Torii S K, Qian F J, Bai Y Q, Kou Z D, Zha J J, Shao Y Y, Zhang Y J, Xu F, Caron L 2024 Acta Mater. 263 119530Google Scholar

    [7]

    Imaizumi K, Fujita A, Suzuki A, Kobashi M, Ozaki K 2022 Acta Mater. 227 117726Google Scholar

    [8]

    Beckmann B, Taubel A, Gottschall T, Pfeuffer L, Koch D, Staab F, Bruder E, Scheibel F, Skokov K P, Gutfleisch O 2025 Acta Mater. 282 120460Google Scholar

    [9]

    Çakır A, Righi L, Albertini F, Acet M, Farle M 2015 Acta Mater. 99 140Google Scholar

    [10]

    Fries M, Pfeuffer L, Bruder E, Gottschall T, Ener S, Diop L V B, Gröb T, Skokov K P, Gutfleisch O 2017 Acta Mater. 132 222Google Scholar

    [11]

    Dan’kov S Y, Tishin A M, Pecharsky V K, Gschneidner K A 1998 Phys. Review B 57 3478

    [12]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407Google Scholar

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909Google Scholar

    [14]

    Miao X F, Wang C X, Liao T W, Ju S H, Zha J J, Wang W Y, Liu J, Zhang Y J, Ren Q Y, Xu F, Caron L 2023 Acta Mater. 242 118453Google Scholar

    [15]

    Kang K H, Lee A Y, Ahn H, Lee W, Kim J W 2025 J. Magn. Magn. Mater. 614 172753Google Scholar

    [16]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nature Mater. 11 620Google Scholar

    [17]

    Gottschall T, Gràcia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov K P, Gutfleisch O 2018 Nature Mater. 17 929Google Scholar

    [18]

    Qiao K M, Cui Z, Hao X W, Zhao Q, Xu Y X, Wang D K, Liu J Y, Wang D D, Xia Y G, Yin W, Hao J Z, He L H, Romero-Muñiz C, Law J Y, Franco V, Ren Q Y, Zhang H 2025 Acta Mater. 297 121344Google Scholar

    [19]

    Li Y, Zeng Q Q, Wei Z Y, Liu E K, Han X L, Du Z W, Li L W, Xi X K, Wang W H, Wang S G, Wu G H 2019 Acta Mater. 174 289Google Scholar

    [20]

    郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 65 217502Google Scholar

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar

    [21]

    Onuike B, Heer B, Bandyopadhyay A 2018 Addit. Manuf. 21 133

    [22]

    Wen Y J, Wu X K, Huang A K, Narayan R L, Wang P, Zhang L J, Zhang B C, Ramamurty U, Qu X H 2024 Acta Mater. 264 119572Google Scholar

    [23]

    Wen Y J, Zhang B C, Narayan R L, Wang P, Song X, Zhao H, Ramamurty U, Qu X H 2021 Addit. Manuf. 40 101926

    [24]

    Wen Y J, Gao Y, Narayan R L, Cai W, Wang P, Wei X D, Zhang B C, Ramamurty U, Qu X H 2025 Int. J. Plasticity 189 104342Google Scholar

    [25]

    Liu J, He C, Zhang M X, Yan A R 2016 Acta Mater. 118 44Google Scholar

    [26]

    Shao Y Y, Liu J, Zhang M X, Yan A R, Skokov K P, Karpenkov D Y, Gutfleisch O 2017 Acta Mater. 125 506Google Scholar

    [27]

    Sun Y, Lv W J, Liang Y, Gao Y, Cui W J, Yan Y J, Zhao W Y, Zhang Q J, Sang X H 2023 Scripta Mater. 223 115068Google Scholar

    [28]

    Krautz M, Skokov K, Gottschall T, Teixeira C S, Waske A, Liu J, Schultz L, Gutfleisch O 2014 J. Alloys Compd. 598 27Google Scholar

    [29]

    Eggert B, Lill J, Günzing D, Terwey A, Radulov I A, Wilhelm F, Rogalev A, Rovezzi M, Skokov K, Ollefs K, Gutfleisch O, Gruner M E, Wende H 2025 J. Alloys Compd. 1031 180586Google Scholar

    [30]

    Zhang X, Wang K, Huang K L, Yao Q R, Lu Z, Long Q X, Deng J Q, Wang J, Zhou H Y 2024 J. Magn. Magn. Mater. 607 172379Google Scholar

    [31]

    Miao L Y, Lu X, Wei Z Y, Zhang Y F, Zhang Y X, Liu J 2023 Acta Mater. 245 118635Google Scholar

    [32]

    Lovell E, Pereira A M, Caplin A D, Lyubina J, Cohen L F 2014 Adv. Energy Mater. 5 1401639

    [33]

    Lai J W, Sepehri-Amin H, Tang X, Li J, Matsushita Y, Ohkubo T, Saito A T, Hono K 2021 Acta Mater. 220 117286Google Scholar

    [34]

    Liu J, Krautz M, Skokov K, Woodcock T G, Gutfleisch O 2011 Acta Mater. 59 3602Google Scholar

    [35]

    杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚 2018 67 077501Google Scholar

    Yang J J, Zhao J L, Xu L, Zhang H G, Yue M, Liu D M, Jiang Y J 2018 Acta Phys. Sin. 67 077501Google Scholar

  • [1] 方俊, 赵艳红, 高兴誉, 张其黎, 王越超, 孙博, 刘海风, 宋海峰. 金属铅的宽区多相物态方程.  , doi: 10.7498/aps.74.20250569
    [2] 李国璇, 范海龙. 旋转与强剪切流协同作用对稀合金激光增材制造中界面不稳定性的影响.  , doi: 10.7498/aps.74.20250829
    [3] 李瑞, 沈俊, 张志鹏, 李振兴, 莫兆军, 高新强, 海鹏, 付琪. 基于不同流动时间占比的紧凑式室温磁制冷系统实验研究.  , doi: 10.7498/aps.73.20231066
    [4] 熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁. 面向宽温域功能器件的连续组分外延铁电薄膜.  , doi: 10.7498/aps.72.20230154
    [5] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究.  , doi: 10.7498/aps.72.20231102
    [6] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能.  , doi: 10.7498/aps.70.20211530
    [7] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机.  , doi: 10.7498/aps.70.20202237
    [8] 苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为. 磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算.  , doi: 10.7498/aps.70.20211085
    [9] 刘国强, 柯亚娇, 张孔斌, 何雄, 罗丰, 何斌, 孙志刚. 全固态磁制冷系统物理模型的研究进展.  , doi: 10.7498/aps.68.20191139
    [10] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究.  , doi: 10.7498/aps.67.20180419
    [11] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展.  , doi: 10.7498/aps.66.110701
    [12] 周祥曼, 张海鸥, 王桂兰, 柏兴旺. 电弧增材成形中熔积层表面形貌对电弧形态影响的仿真.  , doi: 10.7498/aps.65.038103
    [13] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟.  , doi: 10.7498/aps.64.210201
    [14] 陈湘, 陈云贵, 唐永柏, 肖定全, 李道华. 一级相变磁制冷材料的基础问题探究.  , doi: 10.7498/aps.63.147502
    [15] 沈满德, 任欢欢. 一种宽温双光谱红外搜索跟踪系统的设计.  , doi: 10.7498/aps.62.090702
    [16] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管.  , doi: 10.7498/aps.62.104401
    [17] 王永田, 刘宗德, 易军, 薛志勇. Gd基非晶与Gd纳米晶复合结构的磁制冷效应.  , doi: 10.7498/aps.61.056102
    [18] 钱忠华, 封国林, 龚志强. 中国夏冬两季最概然温度分布及其增温趋势减缓.  , doi: 10.7498/aps.59.7498
    [19] 姚关华, 徐至展, 屈卫星. 强场自电离中自发辐射谱的功率增宽.  , doi: 10.7498/aps.39.30
    [20] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测.  , doi: 10.7498/aps.34.1049
计量
  • 文章访问数:  230
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-24
  • 修回日期:  2025-10-23
  • 上网日期:  2025-11-01

/

返回文章
返回
Baidu
map