搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关联氧化物异质结磁电输运性质的氢离子调控研究

周轩弛 冀佳慧 姚晓辉

引用本文:
Citation:

关联氧化物异质结磁电输运性质的氢离子调控研究

周轩弛, 冀佳慧, 姚晓辉

Research on the Hydrogen-triggered Magnetoelectric Transitions in Correlated Oxide Heterostructures

Zhou Xuan-Chi, Ji Jia-hui, Yao Xiao-hui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 氢化或质子化通过引入离子功能调控自由度调控关联氧化物材料体系中多重自由度间的关联耦合效应,突破固溶度极限的限制,协同触发关联氧化物发生电子相变与磁转变,为探索材料体系中的新奇物态提供了新途径,在人工智能,关联电子器件及能量转换等领域展现出广阔的应用前景。本文利用激光分子束外延法制备出亚稳态VO2(B)/La0.67Sr0.33MnO3(LSMO)异质结,基于氢离子演化方法,借助多功能氧化物异质结中关联电子与铁磁序间的关联、耦合与重构,发现体系中弱铁磁绝缘相的新物态并涌现出丰富的结构演变与电子态重构等拓扑化学转变。氢化触发VO2(B)/LSMO异质结体系的可逆磁电相变归因于氢化相关电子掺杂占据Mn元素eg (↑)轨道而引发的电子局域化效应以及离子掺杂抑制Mn3+-Mn4+间的双交换相互作用。本工作为探索关联氧化物材料体系中的新奇物态、莫特物理及其功能特性的器件化提供了可行的途径。
    Hydrogenation or protonation offers a feasible pathway for exploring exotic physical functionality and phenomena within correlated oxide system through introducing an ion degree of freedom. This breakthrough endows with great potential for boosting multidisciplinary device applications in artificial intelligence, correlated electronics and energy conversions. Unlike conventional substitutional chemical doping, hydrogenation enables the controllable and reversible control over the charge-lattice-spin-orbital coupling and magnetoelectric states in correlated system, free of the solid-solution limits. Our findings identify proton evolution as a powerful tuning knob to cooperatively regulate the magnetoelectric transport properties in correlated oxide heterostructures, specifically in metastable VO2 (B)/La0.7Sr0.3MnO3 (LSMO) systems grown via laser molecular beam epitaxy (LMBE). Upon hydrogenation, correlated VO2 (B)/LSMO heterostructure undergoes a reversible magnetoelectric phase transition from a ferromagnetic half-metallic state to a weakly ferromagnetic insulating state, accompanied by a pronounced out-of-plane lattice expansion due to the incorporation of protons and the formation of O-H bonds, as confirmed by X-ray diffraction (XRD). Proton evolution extensively suppresses both the electrical conductivity and ferromagnetic order in pristine VO2 (B)/LSMO system, with a remarkable recovery through dehydrogenation via annealing in an oxygen-rich atmosphere, underscoring the high reversibility of hydrogen-induced magnetoelectric transitions. Spectroscopic analyses related to X-ray photoelectron spectroscopy (XPS) and synchrotron-based soft X-ray absorption spectroscopy (sXAS) provide further insights into the physical origin underlying the hydrogen-mediated magnetoelectric transitions. Hydrogen-related band filling in d-orbital of correlated oxides accounts for the electron localization in VO2 (B)/LSMO heterostructure through hydrogenation, while the suppression in the Mn3+-Mn4+ double exchange instead leads to the magnetic transitions. The present work not only expands the hydrogen-related phase diagram for correlated oxide system but also establishes a versatile pathway for designing exotic magnetoelectric functionalities via ionic evolution, with great potential for developing protonic devices.
  • [1]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [2]

    Pan G A, Segedin D F, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Carrizales D C, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, Mundy J A 2022 Nat. Mater. 21 160

    [3]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [4]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402

    [5]

    Lee D, Chung B, Shi Y, Kim G-Y, Campbell N, Xue F, Song K, Choi S-Y, Podkaminer J P, Kim T H, Ryan P J, Kim J-W, Paudel T R, Kang J-H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J, Eom C B 2018 Science 362 1037

    [6]

    del Valle J, Vargas N M, Rocco R, Salev P, Kalcheim Y, Lapa P N, Adda C, Lee M H, Wang P Y, Fratino L, Rozenberg M J, Schuller I K 2021 Science 373 907

    [7]

    Zhou X-C, Li H-F 2024 Acta Phys. Sin. 73 117102 [周轩弛,李海帆 2024 73 117102]

    [8]

    Nukala P, Ahmadi M, Wei Y, de Graaf S, Stylianidis E, Chakrabortty T, Matzen S, Zandbergen H W, Björling A, Mannix D, Carbone D, Kooi B, Noheda B 2021 Science 372 630

    [9]

    Wang L, Feng Q, Kim Y, Kim R, Lee K H, Pollard S D, Shin Y J, Zhou H, Peng W, Lee D, Meng W, Yang H, Han J H, Kim M, Lu Q, Noh T W 2018 Nat. Mater. 17 1087

    [10]

    Yang Y, Wang P, Chen J, Zhang D, Pan C, Hu S, Wang T, Yue W, Chen C, Jiang W, Zhu L, Qiu X, Yao Y, Li Y, Wang W, Jiang Y 2024 Nat. Commun. 15 8645

    [11]

    Shen J, Yao Q, Zeng Q, Sun H, Xi X, Wu G, Wang W, Shen B, Liu Q, Liu E 2020 Phys. Rev. Lett. 125 086602

    [12]

    Liu L, Zhou C, Shu X, Li C, Zhao T, Lin W, Deng J, Xie Q, Chen S, Zhou J, Guo R, Wang H, Yu J, Shi S, Yang P, Pennycook S, Manchon A, Chen J 2021 Nat. Nanotechnol. 16 277

    [13]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 34 2316536

    [14]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533

    [15]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838

    [16]

    Lu N, Zhang Z, Wang Y, Li H-B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C-W, Wu J, Yu P 2022 Nat. Energy 7 1208

    [17]

    Chen S, Wang Z W, Ren H, Chen Y L, Yan W S, Wang C M, Li B W, Jiang J, Zou C W 2019 Sci. Adv. 5 eaav6815

    [18]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078

    [19]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416

    [20]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113

    [21]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860

    [22]

    Zhou X-C, Jiao Y-J 2024 Acta Phys. Sin. 73 197102 [周轩弛,焦勇杰 2024 73 197102]

    [23]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124

    [24]

    Wang Y, Wang J J, Zhang W W, Chao F Y, Li J H, Kong Q H, Qiao F, Zhang L, Huang M, An Q Y 2024 Adv. Funct. Mater. 34 2314761

    [25]

    Zhou X, Jiao Y, Lu W, Guo J, Yao X, Ji J, Zhou G, Ji H, Yuan Z, Xu X 2025 Adv. Sci. 12 2414991

    [26]

    Cao L, Petracic O, Zakalek P, Weber A, Rücker U, Schubert J, Koutsioubas A, Mattauch S, Brückel T 2019 Adv. Mater. 31 1806183

    [27]

    Chen A, Bi Z, Zhang W, Jian J, Jia Q, Wang H 2014 Appl. Phys. Lett. 104 071909

    [28]

    Chen S, Wang Z W, Fan L L, Chen Y L, Ren H, Ji H, Natelson D, Huang Y Y, Jiang J, Zou C W 2017 Phys. Rev. B 96 125130

    [29]

    Chen H, Zhou G, Ji H, Qin Q, Shi S, Shen Q, Yao P, Cao Y, Chen J, Liu Y, Wang H, Lin W, Yang Y, Jia J, Xu X, Chen J, Liu L 2024 Adv. Funct. Mater. 34 2403107

    [30]

    Zhang B, Yang P, Ding J, Chen J, Chow G M 2023 Adv. Sci. 10 2203933

    [31]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974

    [32]

    Li B, Hu M, Ren H, Hu C, Li L, Zhang G, Jiang J, Zou C 2020 J. Phys. Chem. Lett. 11 10045

    [33]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68

  • [1] 郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力. 离子辐照对材料磁性的调控及其应用.  , doi: 10.7498/aps.73.20240541
    [2] 周轩弛, 李海帆. 强关联电子相变氧化物材料及多场调控.  , doi: 10.7498/aps.73.20240289
    [3] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展.  , doi: 10.7498/aps.72.20222266
    [4] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响.  , doi: 10.7498/aps.71.20220291
    [5] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展.  , doi: 10.7498/aps.70.20210097
    [6] 张颂歌, 陈雨彤, 王宁, 柴扬, 龙根, 张广宇. 二维CrI3晶体的磁性测量与调控.  , doi: 10.7498/aps.70.20202197
    [7] 赵世平, 张鑫, 刘智慧, 王全, 王华林, 姜薇薇, 刘超前, 王楠, 刘世民, 崔云先, 马艳平, 丁万昱, 巨东英. 低能氨离子/基团扩散对铟锡氧化物薄膜电学性质的影响规律.  , doi: 10.7498/aps.69.20200860
    [8] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战.  , doi: 10.7498/aps.68.20191043
    [9] 李丹, 李国庆. 氧化物隔离对Si基片上生长L10相FePt薄膜磁性的影响.  , doi: 10.7498/aps.67.20180387
    [10] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究.  , doi: 10.7498/aps.67.20180794
    [11] 李国建, 常玲, 刘诗莹, 李萌萌, 崔伟斌, 王强. 强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控.  , doi: 10.7498/aps.67.20180212
    [12] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控.  , doi: 10.7498/aps.67.20182007
    [13] 胡广海, 金晓丽, 张乔枫, 谢锦林, 刘万东. 利用离子声波朗道阻尼测量氧化物阴极放电中的离子温度.  , doi: 10.7498/aps.64.189401
    [14] 侯清玉, 乌云, 赵春旺. Magnli相亚氧化钛的莫特相变和磁电性能的模拟计算.  , doi: 10.7498/aps.62.237102
    [15] 张敏, 王小霞, 罗积润, 廖显恒. 等离子喷涂含钪氧化物阴极制备及发射特性研究.  , doi: 10.7498/aps.61.077901
    [16] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟.  , doi: 10.7498/aps.60.125201
    [17] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究.  , doi: 10.7498/aps.57.3188
    [18] 李宝河, 鲜于文旭, 万 欣, 张 健, 沈保根. 钙钛矿锰氧化物La0.7Sr0.3MxMn1-xO3(M=Cr,Fe)的巨磁电阻效应与磁性.  , doi: 10.7498/aps.49.1366
    [19] 祝向荣, 沈鸿烈, 沈勤我, 李 铁, 邹世昌, Koichi Tsukamoto, Mamoru Okutomi, Takeshi Yanagisawa, Noboru Higuchi. 二元掺杂镧锰氧化物La-Ca-Ba-Mn-O的庞磁电阻特性.  , doi: 10.7498/aps.48.40
    [20] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅰ)——模型建立.  , doi: 10.7498/aps.45.330
计量
  • 文章访问数:  55
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-01

/

返回文章
返回
Baidu
map