搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能Ar2+-Ar/N2碰撞中的态分辨电子俘获研究

崔述成 邢大地 朱小龙 赵冬梅 郭大龙 高永 张少锋 董晨钟 马新文

引用本文:
Citation:

低能Ar2+-Ar/N2碰撞中的态分辨电子俘获研究

崔述成, 邢大地, 朱小龙, 赵冬梅, 郭大龙, 高永, 张少锋, 董晨钟, 马新文

State-resolved electron capture in low-energy Ar2+-Ar/N2 collisions

CUI Shucheng, XING Dadi, ZHU Xiaolong, ZHAO Dongmei, GUO Dalong, GAO Yong, ZHANG Shaofeng, DONG Chenzhong, MA Xinwen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文采用反应显微成像谱仪研究了炮弹能量40 keV条件下Ar2+离子与Ar与N2气体碰撞体系的单电子俘获和双电子俘获动力学过程. 通过高精度动量成像技术, 实验成功测定了Ar2+-Ar和Ar2+-N2碰撞体系中态分辨的单电子和双电子俘获截面, 并获取了炮弹离子的散射角分布. 实验数据分析表明: 在单电子俘获过程中, Ar2+与Ar原子作用时, 电子主要被俘获至炮弹$ 3s3p^{6} $激发态; 而与N2分子相互作用时, 电子优先占据$ 3s^{2}3p^{5} $态. 值得注意的是, Ar原子体系的单电子俘获截面分布与分子库仑过垒模型预测的反应窗口呈现良好的一致性. 在双电子俘获过程中, 无论靶介质为Ar原子还是N2分子, 双电子俘获均以基态($ 3s^{2}3p^{6} $)占据主导地位. 此外, 还对Ar2+-Ar/N2的单、双俘获过程的散射角分布进行了分析和定性解释.
    As a fundamental process in atomic physics, charge exchange relies on quantum state-resolved data that is crucial for various fields such as astrophysics and plasma physics. However, there remains a gap in the research on multi-electron target systems. This study aims to investigate the dynamic mechanisms of single/double electron capture in collisions between Ar2+ ions and Ar atoms or N2 molecules at an energy of 40 keV, thereby supplementing high-precision experimental data in this field. The experiment is conducted on the electron beam ion source (EBIS) platform at the Institute of Modern Physics, Chinese Academy of Sciences, using the cold target recoil ion momentum spectroscopy (COLTRIMS) technique. An ion beam containing ground-state Ar2+ (3s23p4: 3P) and metastable Ar2+ (3s23p4: 1D, 1S) is used as the projectile, colliding with a supersonic Ar/N2 mixed gas target. Three-dimensional momentum of recoil ions is reconstructed through coincidence measurements of recoil ions and scattered ions, and the Q-value and scattering angle distribution are calculated. Theoretical comparisons are performed using the molecular Coulombic over barrier model (MCBM).The results show that there are similarities in the populations of single-electron captured states between the two systems, but the contribution ratios are different: the Q-value spectrum of the Ar2+-Ar system contains an additional characteristic peak, which corresponds to the process where the projectile ion captures an electron from the 3s orbital of the target while its own 3s electron is excited to the 3p orbital. In contrast, this characteristic peak is absent in the Ar2+-N2 system due to the easy dissociation of excited $ \text{N}_{2}^{+} $ ions. For double-electron capture, both systems are dominated by capturing electrons to the ground state, but only the Ar2+-N2 system shows a significant contribution from excited state populations. The comparison of scattering angles reveals that the higher the capture state of the product ion, the larger the corresponding scattering angle is and the smaller the impact parameter is. This is presumably because electron interactions become more complex at smaller impact parameters, leading to a higher probability of capturing electrons to high-energy levels. In the double-electron capture of the Ar2+-N2 system, only the ground-state channel is populated at small angles (0–1.2 mrad). Additionally, electron capture exhibits dependence on impact parameter: as the angle increases (i.e. the impact parameter decreases), the Q-value of the capture reaction decreases, indicating that the reaction tends to be more endothermic.
  • 图 1  40 keV 能量下 Ar2+-Ar 碰撞中电子俘获过程的Q 值分布: (a) 单电子俘获; (b) 双电子俘获

    Fig. 1.  Q-value distributions for electron capture processes in Ar2+-Ar collisions at 40 keV: (a) single electron capture; (b) double electron capture.

    图 2  40 keV能量下Ar2+-Ar碰撞过程的单、双电子俘获的散射角分布. 红色实线表示MCBM计算的散射角分布. 黑色竖线为辅助线, 竖线右侧为未完全收集的部分.

    Fig. 2.  Scattering angle distributions for single and double electron capture in the collision process of Ar2+-Ar at 40 keV energy. The red solid line represents the angular differential cross-section calculated by MCBM. The black vertical lines are auxiliary lines, and the region to the right of the vertical lines indicates the incompletely collected portion.

    图 3  40 keV 能量下 Ar2+-N2 碰撞中电子俘获过程的 Q 值分布: (a) 单电子俘获; (b) 双电子俘获

    Fig. 3.  Q-value distributions for electron capture processes in Ar2+-N2 collisions at 40 keV: (a) single electron capture; (b) double electron capture.

    图 4  40 keV能量下Ar2+-N2碰撞过程的单、双电子俘获的散射角分布. (a)表示单电子俘获过程, (b)表示双电子俘获过程. 黑色竖线为辅助线, 竖线右侧为未完全收集的部分.

    Fig. 4.  Scattering angle distributions for single and double electron capture in the collision process of Ar2+-N2 at 40 keV energy. (a) represents the single electron capture process, and (b) represents the double electron capture process. The black vertical lines are auxiliary lines, and the region to the right of the vertical lines indicates the incompletely collected portion.

    图 5  在40 keV能量下, Ar2+-N2碰撞过程不同散射角范围内双电子俘获的Q值谱, 其中过程 I: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(1S)+$ \text{N}_{2}^{2+} $和过程II: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(3s23p5nl)+$ \text{N}_{2}^{2+} $

    Fig. 5.  Spectrum of Q values for double electron capture in the range of different scattering angles for the Ar2+-N2 collision process at 40 keV energy, where Process I: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(1S)+$ \text{N}_{2}^{2+} $and Process II: Ar2+(3s23p4 3P, 1D, 1S)+N2→Ar(3s23p5nl)+$ \text{N}_{2}^{2+} $.

    Baidu
  • [1]

    Cravens T 1997 Geophys. Res. Lett. 24 105Google Scholar

    [2]

    Isler R 1994 Plasma Phys. Control. Fusion 36 171Google Scholar

    [3]

    Team D 2010 Plasma Sci. Technol. 12 11Google Scholar

    [4]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trümper J, West R G 1996 Science 274 205Google Scholar

    [5]

    Wei B R, Zhang R T 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [6]

    Cao T, Meng T, Gao Y, Zhang S F, Zhang R T, Yan S, Zhu X L, Wang J, Ma P, Ren B, Xia Z H, Guo D L, Zhang C J, Lin K Z, Xu S, Wei B, Ma X 2023 Astrophys. J. Suppl. Ser. 266 20Google Scholar

    [7]

    Lin K Z, Gao Y, Zhu X L, Zhang S F, Cao T, Guo D L, Shan X, Zhao D M, Chen X J, Ma X 2024 Phys. Rev. A 109 052811Google Scholar

    [8]

    Zhu X B, Xing D D, Lin K Z, Cui S C, Zhu X L, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X 2024 J. Phys. B: At. Mol. Opt. Phys. 57 045001Google Scholar

    [9]

    Guo D L, Gao J W, Zhang S F, Zhu X L, Gao Y, Zhao D M, Zhang R T, Wu Y, Wang J G, Dubois A, Ma X 2021 Phys. Rev. A 103 032827Google Scholar

    [10]

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Gu L, Liang G Y, Guo D L, Gao Y, Zhao D M, Zhang S F, Su M G, Ma X 2021 Astrophys. J. Suppl. Ser. 253 13Google Scholar

    [11]

    Zhu X L, Zhang S F, Gao Y, Guo D L, Xu J W, Zhang R T, Zhao D M, Lin K Z, Zhu X B, Xing D D, Cui S C, Passalidis S, Dubois A, Ma X 2024 Phys. Rev. Lett. 133 173002Google Scholar

    [12]

    Suk H, Guilbaud A, Hird B 1977 Can. J. Phys. 55 1594Google Scholar

    [13]

    Huber B 1980 J. Phys. B: At. Mol. Phys. 13 809Google Scholar

    [14]

    Shields G C, Moran T 1983 J. Phys. B: At. Mol. Phys. 16 3591Google Scholar

    [15]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [16]

    Meng T, Wu Y, Yin H, Tan X, Ren B, Ma P, Tu B, Yao K, Xiao J, Zou Y, Wei B 2025 Astrophys. J. Suppl. Ser. 279 45Google Scholar

    [17]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [18]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [19]

    Ryufuku H, Sasaki K, Watanabe T 1980 Phys. Rev. A 21 745Google Scholar

    [20]

    Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 2925Google Scholar

    [21]

    Cornelius K, Wojtkowski K, Olson R E 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2017Google Scholar

    [22]

    Otranto S, Olson R E, Beiersdorfer P 2006 Phys. Rev. A 73 022723Google Scholar

    [23]

    Kallman T, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [24]

    Andersson L, Danared H, Barany A 1987 Nucl. Instrum. Methods Phys. Res. B 23 54Google Scholar

    [25]

    Zygelman B, Cooper D, Ford M, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846Google Scholar

    [26]

    Stevens J, Peterson R, Pollack E 1983 Phys. Rev. A 27 2396Google Scholar

    [27]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B: At. Mol. Phys. 15 2051Google Scholar

    [28]

    Kamber E Y, Jonathan P, Brenton A G, Beynon J H 1987 J. Phys. B: At. Mol. Phys. 20 4129Google Scholar

    [29]

    Smith D, Grief D, Adams N 1979 Int. J. Mass Spectrom. Ion Phys. 30 271Google Scholar

    [30]

    Hird B, Ali S 1981 J. Phys. B: At. Mol. Phys. 14 267Google Scholar

    [31]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401Google Scholar

    [32]

    Cui S C, Xing D D, Zhu X L, Su M G, Gao Y, Guo D L, Zhao D M, Zhang S F, Fu Y B, Ma X W 2024 Chinese Physics B 33 073401Google Scholar

    [33]

    Li Z X, Lin K Z, Zhu X L, Li Z L, Yuan H, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X W 2025 Chin. Phys. B 34 053401Google Scholar

    [34]

    Xing D D, Cui S C, Wang X X, Zhang D H, Zhu X B, Lin K Z, Gao Y, Guo D L, Zhao D M, Zhang S F, Zhu X L, Ma X 2025 Phys. Rev. A 112 012812Google Scholar

    [35]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res. B 460 224Google Scholar

    [36]

    Ma X, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707Google Scholar

    [37]

    Kramida A, Yu Ralchenko, Reader J, and NIST ASD Team 2024. NIST Atomic Spectra Database (ver. 5.12), [Online]. Available: https://physics.nist.gov/asd [2025, September 8]. National Institute of Standards and Technology, Gaithersburg, MD.

    [38]

    Kamber E Y, Quintana E J, Pollack E 1993 J. Phys. B: At. Mol. Opt. Phys. 26 113Google Scholar

    [39]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B: At. Mol. Phys. 15 263Google Scholar

    [40]

    Chen Y H, Johnson R E, Humphris R R, Siegel M W, Boring J W 1975 J. Phys. B: At. Mol. Phys. 8 1527Google Scholar

  • [1] 黄厚科, 汶伟强, 黄忠魁, 汪书兴, 汤梅堂, 李杰, 冒立军, 袁洋, 万梦宇, 刘畅, 汪寒冰, 周晓鹏, 赵冬梅, 严凯明, 周云斌, 原有进, 杨建成, 张少锋, 朱林繁, 马新文. 基于HIAF开展高电荷态重离子双电子复合谱精密测量的模拟研究.  , doi: 10.7498/aps.74.20241589
    [2] 牛佳洁, 张唯唯, 祁月盈, 高俊文. 高电荷态N6+离子与H原子碰撞中态选择电荷交换过程理论研究.  , doi: 10.7498/aps.74.20250541
    [3] 梁雅琼, 梁贵云. 基于ACE观测数据的太阳风电荷交换X射线辐射因子.  , doi: 10.7498/aps.74.20241603
    [4] 张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文. 二价乙烷分子离子三体碎裂的解离机制研究.  , doi: 10.7498/aps.74.20250008
    [5] 程渝, 任洁茹, 马步博, 刘云, 赵子乾, 魏文青, Dieter H. H.Hoffmann, 邓志刚, 齐伟, 周维民, 程锐, 李忠良, 宋磊, 李源, 赵永涛. 激光加速低能碳离子束在CHO泡沫中的电荷转移过程.  , doi: 10.7498/aps.74.20250634
    [6] 张崇瑞, 何文亮, 曹世权, 颉录有, 董晨钟. 碳离子穿过氢等离子体的电荷态演化理论研究.  , doi: 10.7498/aps.74.20250668
    [7] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究.  , doi: 10.7498/aps.73.20241290
    [8] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , doi: 10.7498/aps.70.20201685
    [9] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置.  , doi: 10.7498/aps.69.20201035
    [10] 张敏, 闫顺成, 高永, 张少锋, 马新文. 分子离子碎裂过程中动能释放的校准方法.  , doi: 10.7498/aps.69.20200901
    [11] 何斌, 丁丁, 屈世显, 王建国. 强磁场下He2++H(1s)的碰撞激发过程的态选择截面研究.  , doi: 10.7498/aps.62.073401
    [12] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究.  , doi: 10.7498/aps.60.093401
    [13] 郭大龙, 马新文, 冯文天, 张少锋, 朱小龙. 反应显微成像谱仪动量及能量分辨因素分析.  , doi: 10.7498/aps.60.113401
    [14] 鞠志萍, 曹午飞, 刘小伟. 质子散射角分布的蒙特卡罗模拟.  , doi: 10.7498/aps.58.174
    [15] 赵益清, 刘玲, 刘春雷, 薛平, 王建国. 氢离子与里德伯原子碰撞中的电荷转移过程.  , doi: 10.7498/aps.58.3248
    [16] 朱小龙, 马新文, 李斌, 刘惠萍, 陈兰芳, 张少锋, 冯文天, 沙杉, 钱东斌, 曹士娉, 张大成. 低能He2+-He反应中单电子俘获微分散射过程的实验研究.  , doi: 10.7498/aps.58.2077
    [17] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究.  , doi: 10.7498/aps.56.6386
    [18] 杨朝文, 缪竞威, 王广林, 刘晓东, 师勉恭. MeV氢微团簇离子与固体介质的电荷交换.  , doi: 10.7498/aps.55.5810
    [19] 杨百方, 缪竞威, 杨朝文, 师勉恭, 唐阿友, 刘晓东. H3+团簇离子与固体相互作用.  , doi: 10.7498/aps.51.55
    [20] 贾祥富, 杨 威. Li+低能(e,2e)反应角分布.  , doi: 10.7498/aps.47.1783
计量
  • 文章访问数:  318
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-09-10
  • 上网日期:  2025-10-10

/

返回文章
返回
Baidu
map