搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态离子碰撞诱导氟甲烷分子三价离子解离

谭旭 房凡 张煜 孙德昊 吴怡娇 殷浩 孟天鸣 屠秉晟 魏宝仁

引用本文:
Citation:

高电荷态离子碰撞诱导氟甲烷分子三价离子解离

谭旭, 房凡, 张煜, 孙德昊, 吴怡娇, 殷浩, 孟天鸣, 屠秉晟, 魏宝仁

Dissociation of fluoromethane trication induced by highly charged ion collisions

TAN Xu, FANG Fan, ZHANG Yu, SUN Dehao, WU Yijiao, YIN Hao, MENG Tianming, TU Bingsheng, WEI Baoren
cstr: 32037.14.aps.74.20251099
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 研究分子的碎裂机制以及碎片的动能分布, 有助于理解其在等离子体物理、生物组织的辐射损伤和星际化学等方面的重要作用. 本文利用冷靶反冲离子动量谱仪开展了3 keV/u的Ar8+离子束与氟甲烷气体分子束的碰撞实验, 聚焦CH3F3+离子C—F键和C—H键断裂后形成H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+这一三体碎裂通道, 测得3个碎片离子的三维动量. 借助离子-离子动能谱、Newton图和Dalitz图展示碎片的动能与动量关联, 分析了H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的解离机制. 研究发现, 该通道存在协同碎裂以及通过中间体CH2F2+顺序碎裂两种解离方式, 其中协同碎裂占主导地位. 此外, 实验上观测到两种不同动力学特征的协同碎裂过程, 表明CH3F3+离子中H原子可以具有不同的化学环境. 这可能是由于分子异构化产生不同分子构型或者Jahn-Teller效应使得分子产生不同C—H键所致.
    Investigating molecular fragmentation mechanisms and the kinetic energy distributions of fragments can offer crucial insights into their roles in plasma physics, radiation-induced damage in biological tissues, and interstellar chemistry. In this study, we conduct the experiments on collision between 3 keV/u ${\rm Ar}^{8+} $ ions and CH3F molecules by using a cold target recoil ion momentum spectrometer (COLTRIMS).We focus on the three-body fragmentation channel H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ resulting from C—F and C—H bond cleavage in CH3F3+ ions, and measure the three-dimensional momentum vectors of all fragment ions. The fragmentation mechanism involved is analyzed using ion-ion kinetic energy correlation spectra, Newton diagrams, Dalitz plots, and other correlation spectra.Our results reveal two different dissociation mechanisms for the H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel, i.e. concerted fragmentation and sequential fragmentation, with the former one being dominant. In the sequential fragmentation process, H+ and the intermediate CH2F2+ are firstly formed, followed by further fragmentation of the intermediates into $ {\mathrm{C}\mathrm{H}}_{2}^{+} $ and F+. No sequential pathways involving HF2+ or $ {\mathrm{C}\mathrm{H}}_{3}^{2+} $ intermediates are identified. Furthermore, we observe two types of concerted fragmentation processes with different dynamical characteristics, suggesting that hydrogen atoms in CH3F3+ may occupy different chemical environments. This phenomenon can originate from either molecular isomerization producing different structural geometries or the Jahn-Teller effect leading to inequivalent C—H bonds. This study reveals the three-body dissociation dynamics of CH3F3+ induced by highly charged ion collisions, highlighting the significant role of the Jahn-Teller effect or molecular isomerization in the ionic dissociation of polyatomic molecules.
      通信作者: 张煜, zyclay@outlook.com ; 魏宝仁, brwei@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12374227, 12104185)、国家重点研发计划(批准号: 2022YFA1602504)和嘉兴市青年科技人才专项(批准号: 2024AY40007)资助的课题.
      Corresponding author: ZHANG Yu, zyclay@outlook.com ; WEI Baoren, brwei@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374227, 12104185), the National Key R&D Program of China (Grant No. 2022YFA1602504), and the Young Sci-Tech Talent Special Program of Jiaxing, China (Grant No. 2024AY40007).
    [1]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [2]

    Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986Google Scholar

    [3]

    Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162Google Scholar

    [4]

    Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [5]

    Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251Google Scholar

    [6]

    Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796Google Scholar

    [7]

    Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805Google Scholar

    [8]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [9]

    张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 74 063401Google Scholar

    Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401Google Scholar

    [10]

    Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603Google Scholar

    [11]

    Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785Google Scholar

    [12]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [13]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [14]

    Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810Google Scholar

    [15]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [16]

    Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495Google Scholar

    [17]

    Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302Google Scholar

    [18]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [19]

    Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306Google Scholar

    [20]

    Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158Google Scholar

    [21]

    Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103Google Scholar

    [22]

    Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012Google Scholar

    [23]

    Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305Google Scholar

    [24]

    Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409Google Scholar

    [25]

    Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909Google Scholar

    [26]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [27]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [28]

    Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944Google Scholar

    [29]

    Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807Google Scholar

    [30]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [31]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [32]

    Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104Google Scholar

    [33]

    Bersuker I B 2001 Chem. Rev. 101 1067Google Scholar

    [34]

    Bersuker I B 2021 Chem. Rev. 121 1463Google Scholar

    [35]

    Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404Google Scholar

    [36]

    Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220Google Scholar

    [37]

    Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540Google Scholar

    [38]

    Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443Google Scholar

    [39]

    Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231Google Scholar

    [40]

    O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688Google Scholar

    [41]

    Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838Google Scholar

    [42]

    Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106Google Scholar

    [43]

    Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603Google Scholar

    [44]

    Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002Google Scholar

    [45]

    Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571Google Scholar

    [46]

    Matsubara T 2023 J. Phys. Chem. A 127 4801Google Scholar

  • 图 1  CH3F3+离子解离的三离子TOF符合谱

    Fig. 1.  Coincidence TOF map of CH3F3+ dissociation involving three ionic fragments.

    图 2  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的Newton图

    Fig. 2.  Newton diagrams of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel.

    图 3  $ {\mathrm{C}\mathrm{H}}_{2}^{+} $离子和F+离子的动能关联谱

    Fig. 3.  Kinetic energy correlation spectra of $ {\mathrm{C}\mathrm{H}}_{2}^{+} $ ions and F+ ions.

    图 4  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道的Dalitz图, 其中(a), (b), (c)分别为图3中A, B和C区域中的碎裂事件

    Fig. 4.  Dalitz diagrams of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel, (a), (b), (c) corresponding to fragmentation events in regions A, B, and C of Fig. 3, respectively.

    图 5  H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+通道所有事件以及图3中不同区域事件的KER谱

    Fig. 5.  KER spectra for all events of H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel and events in different regions of Fig. 3.

    图 6  $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $和$ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $的关联谱

    Fig. 6.  Correlation spectrum of $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $and $ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $.

    Baidu
  • [1]

    Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264Google Scholar

    [2]

    Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986Google Scholar

    [3]

    Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162Google Scholar

    [4]

    Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [5]

    Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251Google Scholar

    [6]

    Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796Google Scholar

    [7]

    Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805Google Scholar

    [8]

    Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar

    [9]

    张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 74 063401Google Scholar

    Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401Google Scholar

    [10]

    Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603Google Scholar

    [11]

    Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785Google Scholar

    [12]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [13]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [14]

    Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810Google Scholar

    [15]

    Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar

    [16]

    Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495Google Scholar

    [17]

    Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302Google Scholar

    [18]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [19]

    Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306Google Scholar

    [20]

    Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158Google Scholar

    [21]

    Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103Google Scholar

    [22]

    Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012Google Scholar

    [23]

    Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305Google Scholar

    [24]

    Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409Google Scholar

    [25]

    Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909Google Scholar

    [26]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156Google Scholar

    [27]

    Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar

    [28]

    Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944Google Scholar

    [29]

    Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807Google Scholar

    [30]

    Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701Google Scholar

    [31]

    Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708Google Scholar

    [32]

    Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104Google Scholar

    [33]

    Bersuker I B 2001 Chem. Rev. 101 1067Google Scholar

    [34]

    Bersuker I B 2021 Chem. Rev. 121 1463Google Scholar

    [35]

    Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404Google Scholar

    [36]

    Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220Google Scholar

    [37]

    Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540Google Scholar

    [38]

    Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443Google Scholar

    [39]

    Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231Google Scholar

    [40]

    O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688Google Scholar

    [41]

    Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838Google Scholar

    [42]

    Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106Google Scholar

    [43]

    Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603Google Scholar

    [44]

    Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002Google Scholar

    [45]

    Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571Google Scholar

    [46]

    Matsubara T 2023 J. Phys. Chem. A 127 4801Google Scholar

  • [1] 殷桂琴, 张蕾蕾, 脱升. 双频磁化容性耦合氩/甲烷等离子体放电特性.  , 2025, 74(14): 145201. doi: 10.7498/aps.74.20250244
    [2] 张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文. 二价乙烷分子离子三体碎裂的解离机制研究.  , 2025, 74(6): 063401. doi: 10.7498/aps.74.20250008
    [3] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制.  , 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [4] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究.  , 2024, 73(24): 240701. doi: 10.7498/aps.73.20241290
    [5] 曹树利, 李寿哲, 牛裕龙, 李容毅, 朱海龙. 常压下预混甲烷和空气微波等离子体放电燃烧的实验研究.  , 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [6] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟.  , 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [7] 吴永刚, 刘家兴, 刘红玲, 徐梅, 令狐荣锋. 三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究.  , 2019, 68(6): 063102. doi: 10.7498/aps.68.20182121
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学.  , 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [10] 申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅. 中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析.  , 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [11] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学.  , 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [12] 周磊, 李晓亚, 祝文军, 王加祥, 唐昌建. 激光辐照固体靶产生等离子体反冲研究.  , 2016, 65(8): 085201. doi: 10.7498/aps.65.085201
    [13] 林康, 宫晓春, 宋其迎, 季琴颖, 马俊杨, 张文斌, 陆培芬, 曾和平, 吴健. 双色圆偏振飞秒脉冲驱动CO分子不对称解离.  , 2016, 65(22): 224209. doi: 10.7498/aps.65.224209
    [14] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究.  , 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [15] 朱小龙, 马新文, 李斌, 冯文天, 张少锋, 刘惠萍, 钱东斌, 张大成. 低能He2+-He碰撞体系转移电离机理的实验研究.  , 2010, 59(1): 620-624. doi: 10.7498/aps.59.620
    [16] 朱小龙, 马新文, 李斌, 刘惠萍, 陈兰芳, 张少锋, 冯文天, 沙杉, 钱东斌, 曹士娉, 张大成. 低能He2+-He反应中单电子俘获微分散射过程的实验研究.  , 2009, 58(3): 2077-2082. doi: 10.7498/aps.58.2077
    [17] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离.  , 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [18] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究.  , 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [19] 程珊华, 宁兆元, 黄峰. 等离子体增强反应蒸发沉积的氟掺杂氧化铟薄膜的性质.  , 2002, 51(3): 668-673. doi: 10.7498/aps.51.668
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱.  , 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  574
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-15
  • 修回日期:  2025-09-01
  • 上网日期:  2025-09-05

/

返回文章
返回
Baidu
map