搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

11Be2+离子动力学电偶极极化率的高精度计算

吴芳菲 施皓天 戚晓秋 左娅妮

引用本文:
Citation:

11Be2+离子动力学电偶极极化率的高精度计算

吴芳菲, 施皓天, 戚晓秋, 左娅妮

High-Precision Calculation of the Dynamic Electric Dipole Polarizability of the 11Be2+ Ion

WU Fangfei, SHI Haotian, QI Xiaoqiu, ZUO Yani
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 作为典型的单中子晕核,$^{11}$Be在原子及核物理研究中具有独特的意义.本文针对类氦$^{11}$Be$^{2+}$离子,采用相对论组态相互作用方法,高精度计算了主量子数最高达$n=8$的$n\,^{3}\!S_1$和$n\,^{3}\!P_{0,1,2}$态的能量与波函数.通过将有限核质量修正算符直接引入Dirac-Coulomb-Breit哈密顿量,使计算能够同时考虑相对论效应和质量相关修正.基于计算的高精度能量与波函数,本文进一步确定了$k\,^3\!S_1\rightarrow m\,^3\!P_{0,1,2}$($k\leq 5$,$m\leq 8$)电偶极跃迁的振子强度,精度达3到6位有效数字.此外,利用态求和法计算了$n'\,^3\!S_1$($n'\leq 5$)态在宽光子频率范围内的动力学电偶极极化率,在远离共振位置处结果最高可达$10^{-6}$精度水平.上述高精度计算结果为$^{11}$Be$^{2+}$离子在高精度测量中涉及的斯塔克频移评估以及光与物质相互作用的模拟等方面提供了重要的理论依据和关键输入参数.
    As a typical one-neutron halo nucleus, $^{11}$Be holds unique significance in atomic and nuclear physics research. The nucleus comprises a tightly bound $^{10}$Be core and a loosely bound valence neutron, forming an exotic nuclear configuration that exhibits remarkable differences in both magnetic and charge radii compared to conventional nuclei, thereby establishing a unique platform for investigating nuclear-electron interactions. This study focuses on the helium-like $^{11}$Be$^{2+}$ ion, employing the relativistic configuration interaction (RCI) method combined with high-order $B$-spline basis functions to systematically calculate the energies and wavefunctions of the $n\,^{3}\!S_1$ and $n\,^{3}\!P_{0,1,2}$ states up to principal quantum number $n=8$. By directly incorporating the nuclear mass shift operator $H_M$ into the Dirac-Coulomb-Breit (DCB) Hamiltonian, this work achieves a comprehensive treatment of relativistic effects, Breit interactions, and nuclear mass corrections for $^{11}$Be$^{2+}$. The results demonstrate that the energies of states with $n\leq5$ converge to eight significant digits, showing excellent agreement with existing NRQED values, such as $-9.298\,711\,91(5)$ a.u. for the $2\,^{3}\!S_1$ state. The nuclear mass corrections are on the order of $10^{-4}$ a.u. and decrease with increasing principal quantum number.
    Using the high-precision wavefunctions, the electric dipole oscillator strengths for $k\,^3\!S_1 \rightarrow m\,^3\!P_{0,1,2}$ transitions ($k \leq 5$, $m \leq 8$) were determined, with results for low-lying excited states ($m\leq4$) accurate to six significant digits, providing reliable data for evaluating transition probabilities and radiative lifetimes. Furthermore, the dynamic electric dipole polarizabilities of the $n'\,^3\!S_1$ ($n' \leq 5$) states were calculated via the sum-over-states method. The static polarizabilities exhibit a significant increase with principal quantum number. For the $J=1$ state, the difference in polarizability between the magnetic sublevels $M_J=0$ and $M_J=\pm1$ is three times the tensor polarizability. In the calculation of dynamic polarizabilities, the precision reaches $10^{-6}$ in non-resonant regions, whereas achieving the same accuracy near resonance requires higher energy precision. These high-precision computational results provide crucial theoretical foundations and key input parameters for evaluating Stark shifts in high-precision measurements, simulating light-matter interactions, and investigating single-neutron halo nuclear structures.
  • [1]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001

    [2]

    Wang T, Jiang L, Wang X, Dong C Z, Wu Z W, Jiang J 2021 Acta Phys. Sin. 70 043101 (in Chinese) [王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军 2021 70 043101]

    [3]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90 052508

    [4]

    Lou Z S, Wang Y F, Kang B Y, Li R, Zhang W J, Wei Y F, Bu M L, Cai Y Y 2025 Acta Phys. Sin. 74 103202 (in Chinese) [娄宗帅, 王跃飞, 康博溢, 李睿, 张文君, 魏远飞, 布明鹭, 蔡翊宇 2025 物理学 报 74 103202]

    [5]

    Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512

    [6]

    Babb J F, Klimchitskaya G L, Mostepanenko V M 2004 Phys. Rev. A 70 042901

    [7]

    Patkóš V c v, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 042809

    [8]

    Patkóš V c v, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 012803

    [9]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001

    [10]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121 143002

    [11]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801(R)

    [12]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002

    [13]

    Sun W, Zhang P P, Zhou P p, Chen S l, Zhou Z q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K l 2023 Phys. Rev. Lett. 131 103002

    [14]

    Qi X Q, Zhang P P, Yan Z C, Tang L Y, Chen A X, Shi T Y, Zhong Z X 2025 Phys. Rev. Res. 7 L022020

    [15]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515

    [16]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515

    [17]

    Wu F F, Deng K, Lu Z H 2022 Phys. Rev. A 106 042816

    [18]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199–203

    [19]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791–4794

    [20]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728–2742

    [21]

    Yerokhin V A, Pachucki K 2010 Phys. Rev. A 81 022507

    [22]

    Qi X Q, Zhang P P, Yan Z C, Shi T Y, Drake G W F, Chen A X, Zhong Z X 2023 Phys. Rev. A 107 L010802

    [23]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Chen A X, Zhong Z X, Shi T Y 2024 Phys. Rev. A 110 012810

    [24]

    Bishop D M, Rérat M 1989 J. Chem. Phys. 91 5489–5491

    [25]

    Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375–1378

    [26]

    Zhu J M, Zhou B L, Yan Z C 1999 Chem. Phys. Lett. 313 184–188

    [27]

    Yan Z C, Zhu J M, Zhou B L 2000 Phys. Rev. A 62 034501

    [28]

    Zhu J M, Zhou B L, Yan Z C 2000 Mol. Phys. 98 529–534

    [29]

    Wu F F, Deng K, Lu Z H 2023 J. Quant. Spectrosc. Radiat. Transf. 295 108414

    [30]

    Wu F F, Qi X Q, Chen A X 2024 J. Chem. Phys. 161 134304

    [31]

    Takamine A, Wada M, Okada K, Nakamura T, Schury P, Sonoda T, Lioubimov V, Iimura H, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2009 Eur. Phys. J. A 42 369–373

    [32]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93 025010

    [33]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 307–315

    [34]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A 108 L051101

    [35]

    Porsev S G, Kozlov M G, Safronova M S 2023 Phys. Rev. A 108 L051102

  • [1] 张永慧, 史庭云, 唐丽艳. B-样条基组方法在少电子原子结构精密计算中的应用.  , doi: 10.7498/aps.74.20241728
    [2] 魏远飞, 唐志明, 李承斌, 黄学人. Al+光钟态“幻零”波长的理论计算.  , doi: 10.7498/aps.73.20240177
    [3] 杨帅, 唐泽波, 杨驰, 查王妹. 相对论重离子碰撞中光子-光子相互作用的碰撞参数依赖性.  , doi: 10.7498/aps.72.20230948
    [4] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像.  , doi: 10.7498/aps.68.20190610
    [5] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移.  , doi: 10.7498/aps.67.20171817
    [6] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究.  , doi: 10.7498/aps.67.20172662
    [7] 陈泽章. 太赫兹波段液晶分子极化率的理论研究.  , doi: 10.7498/aps.65.143101
    [8] 徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威. 溶剂效应对β胡萝卜素分子电子振动耦合的影响.  , doi: 10.7498/aps.63.167801
    [9] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究.  , doi: 10.7498/aps.63.113101
    [10] 杨建会, 范强, 张建平. 类氖等电子系列离子基态的双电子复合速率系数研究.  , doi: 10.7498/aps.61.193101
    [11] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究.  , doi: 10.7498/aps.60.013601
    [12] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究.  , doi: 10.7498/aps.59.2401
    [13] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用.  , doi: 10.7498/aps.59.4547
    [14] 姚建明, 杨翀. AB效应对自旋多端输运的影响.  , doi: 10.7498/aps.58.3390
    [15] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正.  , doi: 10.7498/aps.54.2620
    [16] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论.  , doi: 10.7498/aps.54.3000
    [17] 马晓光, 孙卫国, 程延松. 高密度体系光电离截面新表达式的应用.  , doi: 10.7498/aps.54.1149
    [18] 韩定安, 郭 弘, 孙 辉, 白艳锋. 三能级Λ-系统探测光的频率调制效应研究.  , doi: 10.7498/aps.53.1793
    [19] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究.  , doi: 10.7498/aps.52.3002
    [20] 韩利红, 芶秉聪, 王菲. 类铍BⅡ离子激发态的相对论能量和精细结构.  , doi: 10.7498/aps.50.1681
计量
  • 文章访问数:  233
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-02

/

返回文章
返回
Baidu
map