搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

条纹水电极介质阻挡放电中D2h超点阵斑图研究

李骋 闫志浩 齐晓秀 李雨昕 潘宇扬 董丽芳

引用本文:
Citation:

条纹水电极介质阻挡放电中D2h超点阵斑图研究

李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳

D2h superlattice patterns in dielectric barrier discharge with striped water electrode

LI Cheng, YAN Zhihao, QI Xiaoxiu, LI Yuxin, PAN Yuyang, DONG Lifang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文设计了一种特殊的完全条纹水电极介质阻挡放电装置, 通过求解拉普拉斯方程发现其产生了条纹状非均匀电场. 采用该装置在空气和氩气的混合气体放电中, 观测到了多种具有D2h对称性的条纹斑图, 其中4种条纹超点阵斑图为首次获得. 选取其中结构最复杂的大小点蜂窝条纹超点阵斑图进行研究, 该斑图由小点、大点和蜂窝框架三套放电丝子结构嵌套构成. 实验利用光谱仪测量了不同子结构的发射光谱, 发现其处于不同的等离子体状态; 采用高速照相机和光电倍增管对其时空动力学进行测量, 发现放电顺序为小点→大点→蜂窝框架, 其中蜂窝框架由随机放电丝叠加而成. 理论上, 通过求解泊松方程模拟了不同时刻的电场分布, 很好地解释了上述斑图的形成机制.
    In this work, a special striped water electrode dielectric barrier discharge device is designed. Through numerical solutions of the Laplace equation, the spatial distribution of the applied electric field is revealed to exhibit a strip-shaped nonuniform distribution featuring the alternating regions of enhanced and weakened field intensity. These field gradients play a pivotal role in governing the plasma, for the intensified regions act as preferential sites for discharge onset, directly shaping the formation and evolution of plasma structures. Using this device, a series of novel striped patterns is observed in the discharge of a mixed gas of air and argon, marking a significant advancement in pattern formation studies. Notably, four striped superlattice patterns are obtained for the first time, each displaying intricate structural hierarchies. Among them, the large and small dot honeycomb striped superlattice pattern featuring structural complexity is chosen to investigate the formation mechanisms. The pattern is composed of three substructures: small dots, large dots, and a honeycomb framework. In the experiment, the emission spectra of different substructures are measured using a spectrograph, revealing that they are in different plasma states. The spatiotemporal dynamic behaviors of the pattern are observed using a high-speed camera and two photomultiplier tubes. It is found that the discharge sequence is small dots → large dots → honeycomb framework, where the honeycomb framework is formed by the superposition of random discharge filaments. The electric field distributions at different times are simulated by solving the Poisson equation, and the result well explains the formation mechanism of the above-mentioned patterns.
  • 图 1  实验装置图, 其中T1区域为凹槽有水位置, T2区域为无水位置, 白色虚线框标出了完全条纹水电极表面的放电区域, 放电区域长40 mm, 宽30 mm, 气隙d = 2 mm

    Fig. 1.  Schematic diagram of the experiment, T1 region is the grooved area filled with water, while the T2 region is the water-free area, a white dashed frame marks the discharge area on the surface of fully striped water electrode. Discharge area: length is 40 mm, width is 30 mm, gas gap d = 2 mm.

    图 2  完全条纹电极介质阻挡放电中气隙外加电场的空间分布 (a)—(c) 不同zx-y平面内的电场分布, 外电场的模拟电压为U = 2.5 kV

    Fig. 2.  Spatial distribution of applied electric field in the gas gap: (a)–(c) Electric field distribution in x-y plane at different z values, the applied voltage is 2.5 kV.

    图 3  不同放电参数条件下(空气与氩气混合气体中氩气的含量χ, 气压p, 电压U)的条纹斑图 (a) 条纹斑图, χ = 0, p = 10 kPa, U = 2.2 kV; (b) 大点晕条纹斑图, χ = 0, p = 10 kPa, U = 2.8 kV; (c) 大小点条纹超点阵斑图, χ = 0, p = 10 kPa, U = 3.2 kV; (d) 双条纹斑图, χ = 0, p = 15 kPa, U = 3.8 kV; (e) 大小点蜂窝条纹超点阵斑图, χ = 30%, p = 20 kPa, U = 4.4 kV; (f) 条纹蜂窝超点阵斑图, χ = 30%, p = 20 kPa, U = 4.8 kV

    Fig. 3.  Stripe patterns under different discharge parameters (argon content χ in air-argon mixture, pressure p, voltage U): (a) Stripe pattern, χ = 0, p = 10 kPa, U = 2.2 kV; (b) large dot stripe pattern, χ = 0, p = 10 kPa, U = 2.8 kV; (c) large and small dots stripe superlattice pattern, χ = 0, p = 10 kPa, U = 3.2 kV; (d) double stripe pattern, χ = 0, p = 15 kPa, U = 3.8 kV; (e) large and small dots honeycomb stripe superlattice pattern, χ = 30%, p = 20 kPa, U = 4.4 kV; (f) stripe honeycomb superlattice pattern, χ = 30%, p = 20 kPa, U = 4.8 kV.

    图 4  斑图类型随外加电压增加的演化过程 (a) 初始斑图, U = 2.8 kV; (b) 双条纹斑图, U = 3.4 kV; (c) 大小点蜂窝条纹超点阵斑图, U = 4.4 kV; (d) 条纹蜂窝超点阵斑图, U = 4.8 kV, 其他实验参数 p = 20 kPa, χ = 30%

    Fig. 4.  Evolution sequence of large and small dots honeycomb stripe superlattice pattern with voltage increase: (a) Initial pattern, U = 2.8 kV; (b) stripe pattern, U = 3.4 kV; (c) large and small dots honeycomb stripe superlattice pattern, U = 4.4 kV; (d) stripe honeycomb superlattice pattern, U = 4.8 kV, other experimental parameters: p = 20 kPa, χ = 30%.

    图 5  大小点蜂窝条纹超点阵斑图的光强分布 (a) 大小点蜂窝条纹斑图照片, 白色线框标出了光强模拟区域; (b) 不同子结构光强分布图

    Fig. 5.  Light intensity distribution of the large and small dots honeycomb stripe superlattice pattern: (a) Photograph of the large and small dots stripe superlattice pattern, the white border outlines the simulated light intensity area; (b) light intensity distribution of the pattern.

    图 6  (a) 大小点蜂窝条纹超点阵斑图演化过程随电压 U 与氩气含量 χ 的相图; (b) 大小点蜂窝条纹超点阵斑图随气压 p 与氩气含量 χ 的相图

    Fig. 6.  (a) Phase diagram of the evolution process of the large and small dots honeycomb stripe superlattice pattern as a function of the voltage U and the argon content χ; (b) phase diagram of the large and small dots honeycomb stripe superlattice pattern as a function of the gas pressure p and argon content χ.

    图 7  大小点蜂窝条纹超点阵斑图的发射光谱 (a) 不同子结构在696.54 nm处谱线和中心部分放大图; (b) 子结构S, L和F的电子密度; (c) 不同子结构在360—420 nm内的氮分子发射光谱; (d) 子结构S, L和F的振动温度

    Fig. 7.  Emission spectra of the large and small dots honeycomb stripe superlattice pattern: (a) Spectral line at 696.54 nm and magnified central region for different substructures; (b) electron density values for substructures S, L and F; (c) N2 emission spectra of substructures within 360–420 nm; (d) vibrational temperatures for substructures S, L and F.

    图 8  大小点蜂窝条纹超点阵斑图的时空结构动力学测量 (a) 大小点蜂窝条纹超点阵斑图; (b) 半周期的电流电压波形图; (c) S和L的时间相关性测量; (d) S和F的时间相关性测量

    Fig. 8.  Spatial-temporal structure dynamics measurement of large and small honeycomb stripe superlattice pattern: (a) Image of the pattern; (b) waveforms of voltage and current of the pattern in the positive half-cycle; (c) temporal correlation measurement of S and L; (d) temporal correlation measurement of S and F.

    图 9  框架的不同电压周期叠加下的照片 (a)—(d) 在Δt3 曝光下分别对应叠加的电压周期分别为1, 20, 50和100的照片

    Fig. 9.  Photos of the frame superimposed with different voltage periods. At an exposure time of Δt3: (a)–(d) Correspond respectively to the photographs with superimposed voltage cycles of 1, 20, 50, and 100.

    图 10  大小点蜂窝条纹超点阵斑图不同放电时刻的电场分布以及对应的子结构放电示意图 (a) 大小点蜂窝条纹超点阵斑图的电压电流波形图; (b) 斑图的示意图; (c)—(e) 正半周期气隙中t1, t2t3时刻的电场分布; (f)—(h) 负半周期每个子结构开始前的电场分布; (c1)—(h1) 分别对应图(c)—(h)电场分布下的子结构放电示意图

    Fig. 10.  Electric field distributions at different moments of the large and small dot honeycomb stripe superlattice pattern and the corresponding schematic diagrams of substructure: (a) Applied voltage and current waveforms for the pattern; (b) schematic diagram of the pattern; (c)–(e) electric field distributions in the gas gap at t1, t2, and t3 during the positive half-cycle; (f)–(h) correspond respectively to the electric field distributions before the discharge of each substructure in the negative half-cycle; (c1)–(h1) schematic illustrations of substructure discharge corresponding to the electric fields in panels (c)–(h).

    Baidu
  • [1]

    Kogelschatz U 2010 J. Phys. Conf. Ser. 257 012015Google Scholar

    [2]

    Joron M, Jiggins C D, Papanicolaou A, McMillan W O 2006 Heredity 97 157Google Scholar

    [3]

    Werner T, Koshikawa S, Williams T M, Carroll S B 2010 Nature 464 1143Google Scholar

    [4]

    Rogers J L, Schatz M F, Brausch O, Pesch W 2000 Phys. Rev. Lett. 85 4281Google Scholar

    [5]

    Perkins A C, Grigoriev R O, Schatz M F 2011 Phys. Rev. Lett. 107 064501Google Scholar

    [6]

    Cominotti R, Berti A, Farolfi A, Zenesini A, Lamporesi G, Carusotto I, Recati A, Ferrari G 2022 Phys. Rev. Lett. 128 210401Google Scholar

    [7]

    Frumkin V, Gokhale S 2023 Phy. Rev. E 108 L012601Google Scholar

    [8]

    Bánsági T, Vanag V K, Epstein I R 2011 Science 331 1309Google Scholar

    [9]

    Kameke A V, Huhn F, Muñuzuri A P, Muñuzuri V P 2013 Phys. Rev. Lett. 110 088302Google Scholar

    [10]

    Dong L F, He Y F, Yin Z Q, Chai Z F 2004 Plasma Sources Sci. Technol. 13 164.Google Scholar

    [11]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817Google Scholar

    [12]

    Zhang B, Zhang X B, Wu S Q 2024 J. Appl. Phys. 136 12

    [13]

    Peng B F, Wang R Z, Li J, Jiang N, Yuan D K, Chen Z Q, Lei Z P, Kang A L, Song J C 2024 Appl. Phys. Lett. 125 144102Google Scholar

    [14]

    Peng B F, Jiang N, Zhu Y F, Li J, Wu Y 2024 Plasma Sources Sci. Technol. 33 045018Google Scholar

    [15]

    Peng B F, Li J, Jiang N, Jiang Y, Chen Z Q, Lei Z P, Song J C 2024 Phys. Fluids 36 037144Google Scholar

    [16]

    Liu Q J, You M, Wang J M, Chen Y Y, Guo Z H, Zhu S S, Wu S Q 2024 IEEE Trans. Plasma Sci. 52 8

    [17]

    Li J F, Yao J F, Wang Ying, Zhou Z X, Lan Z H, Yuan C X 2024 Adv. Opt. Mater. 12 17

    [18]

    Wang R G, Li B, Zhang T K, Ouyang J T, Sun Y R 2020 Plasma Sci. Technol. 22 085002Google Scholar

    [19]

    Zhang L, Ouyang J T 2014 Phys. Plasmas 21 103514Google Scholar

    [20]

    Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L Dong L F 2022 Plasma Sources Sci. Technol. 31 025015Google Scholar

    [21]

    Dong L F, Li Y H, Yan Z H, He Y N, Li C, Pan Y Y 2025 Chaos Soliton Fractals 200 117023Google Scholar

    [22]

    Dong L F, Li Y H, Qi X X, Fan W L, Li R, Liu S, Pan Y Y 2025 Opt. Express 33 37246Google Scholar

    [23]

    Dong L F, Zhang L J, He Y N, Wei T, Li Y H, Li C, Pan Y Y 2024 Appl. Phys. Lett. 125 104101Google Scholar

    [24]

    Ongrak P, Poolyarat N, Suksaengpanomrung S, Saidarasamoot K, Jirakiattikul Y, Rithichai P 2023 Horticulturae 9 1269Google Scholar

    [25]

    Kim S J, Kim S, Son B K, Lee K H, Park B J, Cho G 2020 J. Korean Phys. Soc. 77 572Google Scholar

    [26]

    Fan W L, Hou X H, Tian M, Gao K Y, He Y F, Yang Y X, Liu Q, Yao J F, Liu F C, Yuan C X 2022 Plasma Sci. Technol. 24 015402Google Scholar

    [27]

    Yao J X, Miao J S, Li J X, Lian X Y, Ouyang J T 2023 Appl. Phys. Lett. 122 082905Google Scholar

    [28]

    Ouyang J T, Duan X X, Xu S W, He F 2012 Chin. Phys. Lett. 29 025201Google Scholar

    [29]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202Google Scholar

    [30]

    Dong L F, Xiao H, Fan W L, Zhao H T, Yue H 2010 IEEE Trans. Plasma Sci. 38 2486Google Scholar

    [31]

    Dong L F, Li B, Lu N, Li X C, Shen Z K 2012 Phys. Plasmas 19 052304Google Scholar

    [32]

    Dong L F, Li B, Shen Z K, Wang Y J, Lu N 2012 Phys. Rev. E 86 036211Google Scholar

    [33]

    Dong L F, Liu B B, Li C X, Pan Y Y 2019 Phys. Rev. E 100 063201Google Scholar

    [34]

    Dong L F, Liu W B, Wang Y J, Zhang X P 2014 IEEE Trans. Plasma Sci. 42 2Google Scholar

    [35]

    Li C X, Feng J Y, Wang S C, Li C, Ran J X, Pan Y Y, Dong L F 2024 Plasma Sci. Technol. 26 085401Google Scholar

    [36]

    Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504Google Scholar

    [37]

    Sinclair J, Walhout M 2012 Phys. Rev. Lett. 108 035005Google Scholar

    [38]

    Liu W B, Wang Y J, Zhang H, Pan Y Y, Dong L F 2016 Rev. Sci. Instrum. 87 056101Google Scholar

    [39]

    褚佳惠, 董丽芳, 田淼, 李耀华, 贺玉楠, 张建华, 潘宇扬 2024 中国科学: 物理学 力学 天文学 54 245212Google Scholar

    Chu J H, Dong L F, Tian M, Li Y H, He Y N, Zhang J H, Pan Y Y 2024 Sci. China- Phys. Mech. Astron. 54 245212Google Scholar

    [40]

    Dong L F, Qi Y Y, Liu W Y, Fan W L 2009 J. Appl. Phys. 106 013301Google Scholar

    [41]

    Dong L F, Qi Y Y, Zhao Z C, Li Y H 2008 Plasma Sources Sci. Technol. 17 015015Google Scholar

    [42]

    Dong L F, Ran J X, Mao Z G 2005 Appl. Phys. Lett. 86 161501Google Scholar

    [43]

    Li Y H, Pan Y Y, Tian M, Wang Y, He Y N, Zhang J H, Chu J H, Dong L F 2023 Phys. Plasmas 30 033502Google Scholar

    [44]

    Feng J Y, Pan Y Y, Li C X, Liu B B, Dong L F 2020 Phys. Plasmas 27 063516Google Scholar

    [45]

    Wang Y F, Wang L, Guo D, Fan X L, Harati J, Huang H, Chen P F, Chen X G, Guo T L, Weng J, Deng K 2025 Chem. Eng. Sci. 311 121537Google Scholar

    [46]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断.  , doi: 10.7498/aps.74.20250111
    [2] 李耀华, 燕兆赫, 闫志浩, 李骋, 潘宇扬, 董丽芳. 介质阻挡放电中类蜂窝超点阵斑图研究.  , doi: 10.7498/aps.74.20250952
    [3] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡.  , doi: 10.7498/aps.65.174701
    [4] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真.  , doi: 10.7498/aps.64.015101
    [5] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理.  , doi: 10.7498/aps.64.245202
    [6] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散.  , doi: 10.7498/aps.63.238202
    [7] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究.  , doi: 10.7498/aps.63.185208
    [8] 程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉. 不同压力下介质阻挡放电等离子体诱导流场演化的实验研究.  , doi: 10.7498/aps.62.104702
    [9] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制.  , doi: 10.7498/aps.61.245204
    [10] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量.  , doi: 10.7498/aps.61.075211
    [11] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究.  , doi: 10.7498/aps.60.065206
    [12] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究.  , doi: 10.7498/aps.58.4806
    [13] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用.  , doi: 10.7498/aps.57.6444
    [14] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究.  , doi: 10.7498/aps.57.5768
    [15] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图.  , doi: 10.7498/aps.56.3332
    [16] 范伟丽, 董丽芳, 李雪辰, 尹增谦, 贺亚峰, 刘书华. Air/Ar介质阻挡放电中正方形斑图的特性研究.  , doi: 10.7498/aps.56.1467
    [17] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究.  , doi: 10.7498/aps.56.1471
    [18] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图.  , doi: 10.7498/aps.55.362
    [19] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究.  , doi: 10.7498/aps.54.1295
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构.  , doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  258
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-24
  • 修回日期:  2025-09-10
  • 上网日期:  2025-09-26

/

返回文章
返回
Baidu
map