搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信道容量准则的里德伯原子接收机参数优化

陈冠宇 王成 杨宾 周朋朋 陈田田 伍于晨

引用本文:
Citation:

基于信道容量准则的里德伯原子接收机参数优化

陈冠宇, 王成, 杨宾, 周朋朋, 陈田田, 伍于晨

Parameter optimization of Rydberg atomic receiver based on channel capacity criterion

CHEN Guanyu, WANG Cheng, YANG Bin, ZHOU Pengpeng, CHEN Tiantian, WU Yuchen
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 里德伯原子具有较大的电偶极矩, 对电磁信号较为敏感, 基于里德伯原子的接收机, 是一种全新的接收体制, 在通信领域展现出广阔的应用前景. 根据香农公式建立了里德伯原子接收机信道容量模型, 分析了原子数密度、激光束腰及耦合光拉比频率对里德伯原子接收机信道容量的影响. 提出了调整耦合光拉比频率以优化信道容量的策略, 推导出使信道容量最大的耦合光拉比频率的解析解. 本研究为高性能里德伯原子接收机的设计与信道容量优化提供了理论指导.
    Rydberg atoms possess a large electric dipole moment and exhibit high sensitivity to electromagnetic signals. Receivers based on Rydberg atoms represent a novel reception mechanism, demonstrating broad application prospects in the field of communication. Current research has not addressed the influence of the operating parameters of Rydberg atomic receiver on channel capacity. This study establishes a channel capacity model for Rydberg atomic receiver based on Shannon's formula and the response mechanism of the electromagnetically induced transparency (EIT) effect. Using this model, the influences of atomic number density, laser beam waist, and coupling laser Rabi frequency on the channel capacity of Rydberg atomic receiver are analyzed. A strategy for optimizing channel capacity by adjusting the coupling laser Rabi frequency is proposed, and an analytical solution for the Rabi frequency that maximizes channel capacity is derived. The accuracy of this analytical solution is then verified through numerical simulations. The channel capacity corresponding to the analytical solution in this study is similar to the optimal channel capacity obtained using the one-dimensional optimization method (Newton’s method) and is superior to the results obtained by the quadratic interpolation method, demonstrating the effectiveness of the proposed analytical solution in optimizing the channel capacity of Rydberg atomic receiver. This research provides theoretical guidance for designing high-performance Rydberg atomic receiver and optimizing channel capacity.
  • 图 1  里德伯原子接收机 (a) 实验装置; (b) Rb原子四能级跃迁示意图

    Fig. 1.  Rydberg atomic receiver: (a) Experimental setup; (b) schematic of the four-level transition diagram in Rb atoms.

    图 2  (a) 信道容量与原子数密度之间的关系曲线; (b) 信道容量与激光束腰之间的关系曲线

    Fig. 2.  (a) Channel capacity versus atomic density; (b) channel capacity versus laser beam waist.

    图 3  (a) 带宽$ B $与$ {\varOmega _{\text{c}}} $的关系曲线; (b) 信噪比$ {\mathrm{SNR}} $与$ {\varOmega _{\text{c}}} $的关系曲线

    Fig. 3.  (a) Bandwidth $ B $ versus $ {\varOmega _{\text{c}}} $; (b) $ {\mathrm{SNR}} $ versus $ {\varOmega _{\text{c}}} $.

    图 4  $ {{\partial {C_{{\text{Ry}}}}} \mathord{\left/ {\vphantom {{\partial {C_{{\text{Ry}}}}} {\partial {\varOmega _{\text{c}}}}}} \right. } {\partial {\varOmega _{\text{c}}}}} $与$ {\varOmega _{\text{c}}} $的关系曲线

    Fig. 4.  $ {{\partial {C_{{\text{Ry}}}}} \mathord{\left/ {\vphantom {{\partial {C_{{\text{Ry}}}}} {\partial {\varOmega _{\text{c}}}}}} \right. } {\partial {\varOmega _{\text{c}}}}} $ versus $ {\varOmega _{\text{c}}} $.

    图 5  $ {\varOmega _{{\text{c-opt}}}} $与$ {\varOmega _{{\text{RF}}}} $的关系曲线

    Fig. 5.  $ {\varOmega _{{\text{c-opt}}}} $ versus $ {\varOmega _{{\text{RF}}}} $.

    图 6  方法对比图

    Fig. 6.  Methods comparison.

    表 1  符号说明

    Table 1.  Symbols and definitions.

    符号 含义 参数的变化对信道容量的影响程度
    $ {\varOmega _{\text{c}}} $ 耦合光的
    拉比频率
    $ {\varOmega _{\text{c}}} $从$ 2\pi \times 10{\text{ MHz}} $提升至$ 2\pi \times 15{\text{ MHz}} $,
    信道容量提升约8至14 Mbit/s
    $ {\varOmega _{\text{p}}} $ 探测光
    拉比频率
    $ {\varOmega _{\text{p}}} $从$ 2\pi \times 1{\text{ MHz}} $提升至$ 2\pi \times 3{\text{ MHz}} $, 信道容量提升约1 Mbit/s
    ($ {\varOmega _{\text{p}}} $通常取值较小)
    $ {\varOmega _{{\text{RF}}}} $ 信号场
    拉比频率
    $ {\varOmega _{{\text{RF}}}} $从$ 2\pi \times 5{\text{ MHz}} $提升至$ 2\pi \times 15{\text{ MHz}} $,
    信道容量提升约5 Mbit/s
    $ n $ 原子数密度 $ n $从$ 25 \times {10^{16}}{\text{ }}{{\text{m}}^{ - 3}} $提升至$ 100 \times {10^{16}}{\text{ }}{{\text{m}}^{ - 3}} $,
    信道容量提升约8 Mbit/s
    $ r $ 激光束腰 $ r $从$ 25{\text{ μm}} $提升至$ 25{\text{ μm}} $,
    信道容量提升约8 Mbit/s
    $ L $ 原子气室
    的长度
    信道容量随$ L $的增大略有提升
    $ {{{\varGamma }}_i} $ 能级$ \left| i \right\rangle $自发
    辐射衰变速率
    由实验设置确定
    $ {\omega _{\text{p}}} $ 探测光频率 由实验设置确定
    $ {q_{\text{d}}} $ 探测效率 固定值
    $ {\varepsilon _0} $ 真空介电常数 固定值
    $ \hbar $ 约化普朗克
    常数
    固定值
    $ \delta $ 里德伯态失谐 固定值
    下载: 导出CSV
    Baidu
  • [1]

    Adams C S, Pritchard J D, Shaffer J P 2019 J. Phys. B: At. Mol. Opt. Phys. 53 012002

    [2]

    Fancher C T, Scherer D R, John M C S, Schmittberger M B L 2021 IEEE Trans. Quantum Eng. 2 3501313

    [3]

    Schlossberger N, Prajapati N, Berweger S, Rotunno A P, Artusio-Glimpse A B, Simons M T, Sheikh A A, Norrgard E B, Eckel S P, Holloway C L 2024 Nat. Rev. Phys. 6 606Google Scholar

    [4]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [5]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 5931Google Scholar

    [6]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [7]

    Fan H Q, Kumar S, Kübler H, Shaffer J P 2016 J. Phys. B: At. Mol. Opt. Phys. 49 104004Google Scholar

    [8]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [9]

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys 18 1447Google Scholar

    [10]

    Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhang X D, Yan H, Zhu S L 2022 Nat. Photonics 16 291Google Scholar

    [11]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [12]

    Yuan J P, Jin T, Xiao L T, Jia S T, Wang L R 2023 IEEE Antennas Wirel. Propag. Lett. 22 2580Google Scholar

    [13]

    Yuan J P, Jin T, Yan Y, Xiao L T, Jia S T, Wang L R 2024 EPJ Quantum Technol. 11 2Google Scholar

    [14]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [15]

    Cui M Y, Zeng Q, Huang K 2024 IEEE J. Sel. Area. Commun. 43 659

    [16]

    Wade C G, Šibalić N, De Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [17]

    Downes L A, Mackellar A R, Whiting D J, Bourgenot C, Adams C S, Weatherill K J 2020 Phys. Rev. X 10 011027

    [18]

    Li X Z, Li T, Wan J, Zhang B, Huang Q, Yang X Y, Feng L, Zhang K Q, Huang W, Deng H X 2025 J. Phys. D: Appl. Phys. 58 085109Google Scholar

    [19]

    Wu K D, Xie C W, Li C F, Guo G C, Zou C L, Xiang G Y 2024 Sci. Adv. 10 8130Google Scholar

    [20]

    Bohaichuk S M, Ripka F, Venu V, Christaller F, Liu C, Schmidt M, Kübler H, Shaffer J P 2023 Phys. Rev. Appl. 20 061004

    [21]

    Sandidge G, Santamaria-Botello G, Bottomley E, Fan H Q, Popović Z 2024 IEEE Trans. Microwave Theory Tech. 72 2057Google Scholar

    [22]

    Wu F C, An Q, Sun Z S, Fu Y Q 2023 Phys. Rev. A 107 043108Google Scholar

    [23]

    Wu Y H, Xiao D P, Zhang H Q, Yan S 2025 Chin. Phys. B 34 013201Google Scholar

    [24]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 45030Google Scholar

    [25]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [26]

    Knarr S H, Bucklew V G, Langston J, Cox K C, Hill J C, Meyer D H, Drakes J A 2023 IEEE Trans. Quantum Eng. 4 3500108

    [27]

    Zhang L H, Liu B, Liu Z K, Zhang Z Y, Shao S Y, Wang Q F, Ma Y, Han T Y, Guo G C, Ding D S, Shi B S 2024 Chip 3 100089Google Scholar

    [28]

    Mao R Q, Lin Y, Fu Y Q, Ma Y M, Yang K 2024 IEEE Trans. Antennas Propag. 72 2025Google Scholar

    [29]

    Meyer D H, Hill J C, Kunz P D 2023 Phys. Rev. Appl. 19 014025Google Scholar

    [30]

    Meyer D H, O’Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103Google Scholar

    [31]

    Zhang P, Jing M Y, Wang Z, Peng Y, Yuan S X, Zhang H, Xiao L T, Jia S T, Zhang L J 2023 EPJ Quantum Technol. 10 39Google Scholar

    [32]

    Wu H, Wu S C, Gong C, Li S B, Zhu J K 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing Rome, Italy, July 17–19, 2024 p74

    [33]

    Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [34]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [35]

    Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813Google Scholar

    [36]

    Li F 2025 Opt. Lett. 50 1369Google Scholar

    [37]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    [38]

    Shannon C E 1949 Proc. IRE 37 10

    [39]

    Cox K C, Meyer D H, Fatemi F K, Kunz P D 2018 Phys. Rev. Lett. 121 110502Google Scholar

    [40]

    Shylla D, Prajapati N, Rotunno A P, Schlossberger N, Manchaiah D, Watterson W J, Artusio-Glimpse A, Berweger S, Simons M T, Holloway C L 2025 Phys. Rev. A 111 033115Google Scholar

    [41]

    Hu J L, Jiao Y C, He Y H, Zhang H, Zhang L J, Zhao J M, Jia S T 2023 EPJ Quantum Technol. 10 51Google Scholar

    [42]

    Akgül A, Grow D 2023 Mathematics 11 2277Google Scholar

    [43]

    Zhao W G, Wang L Y, Zhang Z X, Mirjalili S, Khodadadi N, Ge Q 2023 Comput. Methods Appl. Mech. Eng. 417 116446Google Scholar

  • [1] 李诗文, 周豹, 赵啟融, 杨小波, 谢再新, 段卓琦, 赵恩铭, 胡永茂. 基于SCAPS-1D的钙钛矿太阳能电池性能的数值模拟与性能优化比较理论分析.  , doi: 10.7498/aps.74.20250335
    [2] 王玉蓉, 屈薇薇, 李桂琳, 邓琥, 尚丽平. 一种基于多目标粒子群算法的太赫兹超材料吸收器快速优化方法.  , doi: 10.7498/aps.74.20241684
    [3] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统.  , doi: 10.7498/aps.74.20250322
    [4] 刘刚钦. 高压下的色心磁共振和量子传感.  , doi: 10.7498/aps.74.20250224
    [5] 李庆, 季云兰, 刘然, SuterDieter, 江敏, 彭新华. 基于强相互作用核自旋系统的量子传感.  , doi: 10.7498/aps.74.20250271
    [6] 张荣香, 代华德, 刘涛, 王唯钰, 周允城, 毕慧聪. 聚焦超几何高斯二型光束在海洋湍流中的信道容量.  , doi: 10.7498/aps.74.20250306
    [7] 郑甜, 陈宇杰, 程锦, 陈兰剑, 刘奥, 东晨. 基于Unet网络的空间信道连续变量量子密钥分发参数优化方法.  , doi: 10.7498/aps.74.20250740
    [8] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术.  , doi: 10.7498/aps.72.20221582
    [9] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法.  , doi: 10.7498/aps.72.20230179
    [10] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化.  , doi: 10.7498/aps.72.20230160
    [11] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测.  , doi: 10.7498/aps.71.20211348
    [12] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感.  , doi: 10.7498/aps.71.20211822
    [13] 刘刚钦. 极端条件下的金刚石自旋量子传感.  , doi: 10.7498/aps.71.20212072
    [14] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控.  , doi: 10.7498/aps.67.20180755
    [15] 王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞. 典型大气窗口太赫兹波传输特性和信道分析.  , doi: 10.7498/aps.65.134101
    [16] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化.  , doi: 10.7498/aps.63.068801
    [17] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析.  , doi: 10.7498/aps.63.110205
    [18] 李红祺, 郭维栋, 孙国栋, 张耀存. 条件非线性最优扰动方法在陆面过程模式参数优化中的扩展应用初探.  , doi: 10.7498/aps.60.019201
    [19] 肖海林, 欧阳缮, 聂在平. 多输入多输出量子密钥分发信道容量研究.  , doi: 10.7498/aps.58.6779
    [20] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究.  , doi: 10.7498/aps.57.3519
计量
  • 文章访问数:  265
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-17
  • 修回日期:  2025-08-29
  • 上网日期:  2025-09-26

/

返回文章
返回
Baidu
map