-
非对称润湿性Janus纤维膜凭借其两侧显著的润湿性差异, 在与液体相互作用时展现出诸多独特性能, 因此在微流控和生物医学等领域具有广阔的应用前景. 液滴定向输运作为Janus纤维膜的关键功能之一, 其输运机制与调控规律对于实际应用至关重要. 然而, 目前对于润湿性梯度及孔隙结构如何调控液滴定向输运行为的研究尚不充分. 本文建立了两相流-相场模型, 结合等离子体辅助构筑的Janus纤维膜液滴输运实验, 验证了模型的可靠性; 在此基础上, 系统研究了液滴在膜内的定向输运行为. 研究表明, 液滴从疏水侧向亲水侧的自发输运由表面自由能梯度、Laplace压差及毛细力协同驱动; 疏水层厚度、亲水层厚度、润湿性梯度和孔隙结构是调控输运效率的关键因素. 相较于传统非对称润湿性结构, 具有润湿性梯度的Janus纤维膜可显著提升液滴定向输运速度, 且亲水侧润湿性与输运速度呈显著正相关; 增大孔隙虽能加速液滴输运, 却会导致其在亲水侧的稳态铺展面积减小. 本研究为优化Janus纤维膜结构、实现液滴的高效与精准操控提供了重要理论依据.The asymmetric wetting Janus fiber membrane exhibits many unique properties when interacting with liquids due to its significant difference in wetting properties on both sides. Therefore, it has broad application prospects in fields such as microfluidics and biomedicine. The directional transport of droplets is one of the key functions of Janus fiber membranes, and its transport mechanism and regulation rules are crucial for practical applications. However, there is currently insufficient research on how wettability gradient and pore structure regulate the directional transport behavior of droplets. In this study, a two-phase flow phase-field model is established, and the reliability of the model is validated through droplet transport experiments conducted on plasma-assisted fabricated Janus fiber membranes. Building on this foundation, the directional transport behavior of droplets within the membrane is systematically investigated. The results show that the spontaneous transport of droplets from hydrophobic side to hydrophilic side is driven by a synergistic effect of surface free energy gradient, Laplace pressure difference, and capillary force. It is found that hydrophobic layer thickness, hydrophilic layer thickness, wettability gradient, and pore structure are key factors in regulating transport efficiency. Compared with traditional structures, Janus fiber membranes with wettability gradients can significantly improve the directional transport speed of droplets, and the wettability of the hydrophilic side shows a significant positive correlation with transport velocity. Although increasing pores can accelerate droplet transport, it simultaneously reduces the steady-state spreading area on the hydrophilic side. This study provides an important theoretical basis for optimizing the Janus fiber membrane structure and achieving efficient and precise fabrication of droplets.
-
Keywords:
- Janus membrane /
- plasma modification /
- two-phase flow phase field model /
- asymmetric wettability /
- droplet transport
-
图 7 液滴定向输运过程中受力分析 (a) 液滴从Janus纤维膜疏水层到亲水层的受力情况; (b) 液滴滴于Janus纤维膜亲水层受力情况
Fig. 7. Force analysis during droplet directional transport: (a) Force distribution of droplet movement from the hydrophobic layer to the hydrophilic layer of Janus fiber membrane; (b) force distribution of droplet movement on the hydrophilic layer of Janus fiber membrane.
图 9 液滴在不同润湿梯度的Janus膜中运动特性仿真结果 (a) 液滴顶端位移变化; (b) 液滴底端位移变化; (c) 液滴铺展直径变化
Fig. 9. Simulation results of droplet kinetic characteristics on Janus fiber membranes with different wetting gradients: (a) Variation in upper contact point displacement of droplet; (b) variation in lower contact point displacement of droplet; (c) variation in spreading diameter of droplet.
图 10 液滴在不同孔间隙的Janus膜中运动特性仿真结果 (a) 液滴顶端位移变化; (b) 液滴底端位移变化; (c) 液滴铺展直径变化
Fig. 10. Simulation results of droplet kinetic characteristics on Janus fiber membranes with different pore gaps: (a) Variation in upper contact point displacement of droplet; (b) variation in lower contact point displacement of droplet; (c) variation in spreading diameter of droplet.
表 1 不同润湿性梯度下Janus纤维膜的水接触角及孔间隙参数
Table 1. Water contact angle and pore gap parameters of Janus fiber membrane under different wettability gradients.
类型 y(mm)方向
0—0.35 mm处
WCA/
(°)y(mm)方向
0.35—0.4 mm处
WCA/
(°)孔间隙
/mmA-on-B 50 150 0.03 A-to-B1 114.3y+50 1200y–330 A-to-B2 142.9y+40 1200y–330 表 2 不同孔间隙下Janus膜的接触角参数
Table 2. Water contact angle parameters of Janus fiber membrane under different pore gaps.
孔间隙/mm y(mm)方向
0—0.35 mm处WCA/(°)y(mm)方向
0.35—0.40 mm处WCA/(°)0.03 114.3y+50 1200y–330 0.04 114.3y+50 1200y–330 0.05 114.3y+50 1200y–330 -
[1] Liang Y, Kim M, Yang E, Septiyanti M, Kim S, Kim H, Byun J, Mamani K C, Choi H 2024 Chem. Eng. J. 496 154087
Google Scholar
[2] Li H N, Yang J, Xu Z K 2020 Adv. Mater. Interf. 7 1902064
Google Scholar
[3] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻 2024 纺织学报 45 10
Yang S, Zhao P J, Cheng C Z, Li C Y, Cheng B W 2024 J. Text. Res. 45 10
[4] Li C X, Zhong F Y, Guo C Y, Zhang Q J, Chen J P, Zhong L B, Zheng Y M 2025 Sep. Purif. Technol. 361 131378
Google Scholar
[5] Zhou H, Guo Z G 2019 J. Mater. Chem. A 7 12921
Google Scholar
[6] Li K, Yang H C, Xu Z K 2024 ACS Appl. Polym. Mater. 6 14190
Google Scholar
[7] Yang P, Ju Y S, He J J, Xia Z C, Chen L, Tang S C 2024 Adv. Fiber Mater. 6 1765
Google Scholar
[8] Zhou H, Wang H X, Lin T, Niu H T 2022 Chem. Eng. J. 427 131936
Google Scholar
[9] Xu B, Zhang J, Pan D, Ni J C, Yin K, Zhang Q L, Ding Y L, Li A, Wu D, Shen Z J 2022 Lab Chip 22 4382
Google Scholar
[10] Wang F, Ren J, Peng Q, Sun H, Zeng Q, Zhang Y, Shi G, Zhang M 2024 Anal. Chem. 96 15394
[11] Dong Y C, Violet C, Sun C Y, Li X H, Sun Y X, Zheng Q B, Tang C Y, Elimelech M 2025 Nat. Commu. 16 2659
Google Scholar
[12] 吕媛媛, 孟家光, 余灵婕, 支超 2024 纺织工程学报 2 79
Google Scholar
L Y Y, Meng J G, Yu L J, Zhi C 2024 J. Adv. Text. Eng. 2 79
Google Scholar
[13] Li H N, Yang J, Xu Z K 2020 Adv. Mater. Interf. 7 1902064
Google Scholar
[14] 张海宝, 陈强 2021 70 22
Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 22
[15] Yang H C, Xie Y, Hou J, Cheetham A K, Chen V, Darling S B 2018 Adv. Mater. 30 1801495
Google Scholar
[16] 邢亚杰, 蒋吾伟, 张洪晶, 周克, 虞啸天, 李永强 2022 浙江理工大学学报(自然科学版) 47 467
Xing Y J, Jiang W W, Zhang H J, Zhou K, Yu X T, Li Y Q 2022 J. Zhejiang Sci-Tech Univ. (Nat. Sci. Ed. ) 47 467
[17] 王伟2021 硕士学位论文(南京: 南京理工大学)
Wang W 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology
[18] 周宝凯2023 硕士学位论文(郑州: 郑州大学)
Zhou B K 2023 M. S. Thesis (Zhengzhou: Zhengzhou University
[19] Li K, Yang H C, Li H N, Zhang C, Liang H Q, Xu Z K 2025 Small Struct. 6 2400470
Google Scholar
[20] 张兴振, 靳健, 朱玉长2023膜科学与技术43 148
Zhang X Z, Jin J, Zhu Y C 2021 Membrane Sci. Technol. 43 148
[21] Lipowsky R 2018 J. Phys. Chem. B 122 3572
[22] Ceyhan U, Tiktaş A, Özdoğan M 2020 Colloid Interf. Sci. Commu. 35 100238
Google Scholar
[23] Varnavides G, Mortensen A, Carter W C 2021 Acta Mater. 210 116831
Google Scholar
[24] Chowdhury I U, Mahapatra P S, Sen A K 2021 Chem. Eng. Sci. 229 116136
Google Scholar
[25] Goel S, Ramachandran A 2017 J. Colloid Interf. Sci. 492 199
Google Scholar
[26] Izri Z, Van Der Linden M N, Michelin S, Dauchot O 2014 Phys. Rev. Lett. 113 248302
Google Scholar
[27] Blank M, Nair P, Pöschel T 2023 Comput. Method Appl. Mech. Eng. 406 115907
Google Scholar
[28] Li C, Kim B, Yoon J, Sett S, Oh J 2024 Adv. Funct. Mater. 34 2308265
Google Scholar
[29] Cassie A B D, Baxter S 1944 Trans. Faraday Society 40 546
Google Scholar
[30] Ody T, Panth M, Sommers A D, Eid K F 2016 Langmuir 32 6967
Google Scholar
[31] Wenzel R N 1936 Ind. Eng. Chem. 28 988
Google Scholar
[32] Du Q J, Zhou P, Pan Y P, Qu X, Liu L, Yu H, Hou J 2022 Chem. Eng. Sci. 249 117327
Google Scholar
[33] Chai G L, Hu Y X, Liu H F, Li J B, Yu J B, Liu L J, Su J W 2024 Int. J. Multiphase Flow 172 104695
Google Scholar
计量
- 文章访问数: 202
- PDF下载量: 6
- 被引次数: 0