搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体辅助构筑非对称润湿性Janus纤维膜的液滴输运行为数值模拟

王涛 盛杰 邓宗晖 李蒙 时礼平 陈兆权 饶思贤

引用本文:
Citation:

等离子体辅助构筑非对称润湿性Janus纤维膜的液滴输运行为数值模拟

王涛, 盛杰, 邓宗晖, 李蒙, 时礼平, 陈兆权, 饶思贤

Numerical simulation of droplet transport behavior in plasma-assisted fabricated asymmetric wettability Janus fiber membranes

WANG Tao, SHENG Jie, DENG Zonghui, LI Meng, SHI Liping, CHEN Zhaoquan, RAO Sixian
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 非对称润湿性Janus纤维膜凭借其两侧显著的润湿性差异, 在与液体相互作用时展现出诸多独特性能, 因此在微流控和生物医学等领域具有广阔的应用前景. 液滴定向输运作为Janus纤维膜的关键功能之一, 其输运机制与调控规律对于实际应用至关重要. 然而, 目前对于润湿性梯度及孔隙结构如何调控液滴定向输运行为的研究尚不充分. 本文建立了两相流-相场模型, 结合等离子体辅助构筑的Janus纤维膜液滴输运实验, 验证了模型的可靠性; 在此基础上, 系统研究了液滴在膜内的定向输运行为. 研究表明, 液滴从疏水侧向亲水侧的自发输运由表面自由能梯度、Laplace压差及毛细力协同驱动; 疏水层厚度、亲水层厚度、润湿性梯度和孔隙结构是调控输运效率的关键因素. 相较于传统非对称润湿性结构, 具有润湿性梯度的Janus纤维膜可显著提升液滴定向输运速度, 且亲水侧润湿性与输运速度呈显著正相关; 增大孔隙虽能加速液滴输运, 却会导致其在亲水侧的稳态铺展面积减小. 本研究为优化Janus纤维膜结构、实现液滴的高效与精准操控提供了重要理论依据.
    The asymmetric wetting Janus fiber membrane exhibits many unique properties when interacting with liquids due to its significant difference in wetting properties on both sides. Therefore, it has broad application prospects in fields such as microfluidics and biomedicine. The directional transport of droplets is one of the key functions of Janus fiber membranes, and its transport mechanism and regulation rules are crucial for practical applications. However, there is currently insufficient research on how wettability gradient and pore structure regulate the directional transport behavior of droplets. In this study, a two-phase flow phase-field model is established, and the reliability of the model is validated through droplet transport experiments conducted on plasma-assisted fabricated Janus fiber membranes. Building on this foundation, the directional transport behavior of droplets within the membrane is systematically investigated. The results show that the spontaneous transport of droplets from hydrophobic side to hydrophilic side is driven by a synergistic effect of surface free energy gradient, Laplace pressure difference, and capillary force. It is found that hydrophobic layer thickness, hydrophilic layer thickness, wettability gradient, and pore structure are key factors in regulating transport efficiency. Compared with traditional structures, Janus fiber membranes with wettability gradients can significantly improve the directional transport speed of droplets, and the wettability of the hydrophilic side shows a significant positive correlation with transport velocity. Although increasing pores can accelerate droplet transport, it simultaneously reduces the steady-state spreading area on the hydrophilic side. This study provides an important theoretical basis for optimizing the Janus fiber membrane structure and achieving efficient and precise fabrication of droplets.
  • 图 1  等离子体辅助构筑非对称润湿性Janus纤维膜流程示意图

    Fig. 1.  Schematic diagram of plasma assisted construction of asymmetric wetting Janus fiber membrane process.

    图 2  液滴在Janus纤维膜中定向输运的(a)仿真模型与(b)网格划分

    Fig. 2.  (a) Simulation model and (b) grid division for directional transport of droplet in Janus fiber membrane.

    图 3  等离子体辅助构筑的Janus纤维膜(a)疏水侧和(b)亲水侧润湿状态和水接触角

    Fig. 3.  Wetting state and water contact angle on (a) hydrophobic side and (b) hydrophilic side of plasma assisted construction of Janus fiber membrane.

    图 4  液滴从疏水侧到亲水侧自输运过程的(a)仿真演化过程及(b)实验监测结果

    Fig. 4.  (a) Simulation evolution process and (b) experimental monitoring results of droplet self-transport from hydrophobic side to hydrophilic side.

    图 5  液滴滴于亲水侧的(a)仿真演化过程及(b)实验监测结果

    Fig. 5.  (a) Simulation evolution process and (b) experimental monitoring result of droplet spreading on the hydrophilic side.

    图 6  液滴克服重力输运的(a)实验监测结果及(b)仿真演化过程

    Fig. 6.  (a) Simulation evolution process and (b) experimental monitoring result of droplet overcoming gravity transport from hydrophobic side to hydrophilic side.

    图 7  液滴定向输运过程中受力分析 (a) 液滴从Janus纤维膜疏水层到亲水层的受力情况; (b) 液滴滴于Janus纤维膜亲水层受力情况

    Fig. 7.  Force analysis during droplet directional transport: (a) Force distribution of droplet movement from the hydrophobic layer to the hydrophilic layer of Janus fiber membrane; (b) force distribution of droplet movement on the hydrophilic layer of Janus fiber membrane.

    图 8  液滴在不同HoLT、HiLT和DD的Janus纤维膜中单向输运的数值仿真结果

    Fig. 8.  Numerical simulation results of unidirectional transport of droplets in Janus fiber membranes with different HoLT, HiLT, and DD.

    图 9  液滴在不同润湿梯度的Janus膜中运动特性仿真结果 (a) 液滴顶端位移变化; (b) 液滴底端位移变化; (c) 液滴铺展直径变化

    Fig. 9.  Simulation results of droplet kinetic characteristics on Janus fiber membranes with different wetting gradients: (a) Variation in upper contact point displacement of droplet; (b) variation in lower contact point displacement of droplet; (c) variation in spreading diameter of droplet.

    图 10  液滴在不同孔间隙的Janus膜中运动特性仿真结果 (a) 液滴顶端位移变化; (b) 液滴底端位移变化; (c) 液滴铺展直径变化

    Fig. 10.  Simulation results of droplet kinetic characteristics on Janus fiber membranes with different pore gaps: (a) Variation in upper contact point displacement of droplet; (b) variation in lower contact point displacement of droplet; (c) variation in spreading diameter of droplet.

    表 1  不同润湿性梯度下Janus纤维膜的水接触角及孔间隙参数

    Table 1.  Water contact angle and pore gap parameters of Janus fiber membrane under different wettability gradients.

    类型y(mm)方向

    0—0.35 mm处
    WCA/
    (°)
    y(mm)方向

    0.35—0.4 mm处
    WCA/
    (°)
    孔间隙
    /mm
    A-on-B501500.03
    A-to-B1114.3y+501200y–330
    A-to-B2142.9y+401200y–330
    下载: 导出CSV

    表 2  不同孔间隙下Janus膜的接触角参数

    Table 2.  Water contact angle parameters of Janus fiber membrane under different pore gaps.

    孔间隙/mmy(mm)方向
    0—0.35 mm处WCA/(°)
    y(mm)方向
    0.35—0.40 mm处WCA/(°)
    0.03114.3y+501200y–330
    0.04114.3y+501200y–330
    0.05114.3y+501200y–330
    下载: 导出CSV
    Baidu
  • [1]

    Liang Y, Kim M, Yang E, Septiyanti M, Kim S, Kim H, Byun J, Mamani K C, Choi H 2024 Chem. Eng. J. 496 154087Google Scholar

    [2]

    Li H N, Yang J, Xu Z K 2020 Adv. Mater. Interf. 7 1902064Google Scholar

    [3]

    杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻 2024 纺织学报 45 10

    Yang S, Zhao P J, Cheng C Z, Li C Y, Cheng B W 2024 J. Text. Res. 45 10

    [4]

    Li C X, Zhong F Y, Guo C Y, Zhang Q J, Chen J P, Zhong L B, Zheng Y M 2025 Sep. Purif. Technol. 361 131378Google Scholar

    [5]

    Zhou H, Guo Z G 2019 J. Mater. Chem. A 7 12921Google Scholar

    [6]

    Li K, Yang H C, Xu Z K 2024 ACS Appl. Polym. Mater. 6 14190Google Scholar

    [7]

    Yang P, Ju Y S, He J J, Xia Z C, Chen L, Tang S C 2024 Adv. Fiber Mater. 6 1765Google Scholar

    [8]

    Zhou H, Wang H X, Lin T, Niu H T 2022 Chem. Eng. J. 427 131936Google Scholar

    [9]

    Xu B, Zhang J, Pan D, Ni J C, Yin K, Zhang Q L, Ding Y L, Li A, Wu D, Shen Z J 2022 Lab Chip 22 4382Google Scholar

    [10]

    Wang F, Ren J, Peng Q, Sun H, Zeng Q, Zhang Y, Shi G, Zhang M 2024 Anal. Chem. 96 15394

    [11]

    Dong Y C, Violet C, Sun C Y, Li X H, Sun Y X, Zheng Q B, Tang C Y, Elimelech M 2025 Nat. Commu. 16 2659Google Scholar

    [12]

    吕媛媛, 孟家光, 余灵婕, 支超 2024 纺织工程学报 2 79Google Scholar

    L Y Y, Meng J G, Yu L J, Zhi C 2024 J. Adv. Text. Eng. 2 79Google Scholar

    [13]

    Li H N, Yang J, Xu Z K 2020 Adv. Mater. Interf. 7 1902064Google Scholar

    [14]

    张海宝, 陈强 2021 70 22

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 22

    [15]

    Yang H C, Xie Y, Hou J, Cheetham A K, Chen V, Darling S B 2018 Adv. Mater. 30 1801495Google Scholar

    [16]

    邢亚杰, 蒋吾伟, 张洪晶, 周克, 虞啸天, 李永强 2022 浙江理工大学学报(自然科学版) 47 467

    Xing Y J, Jiang W W, Zhang H J, Zhou K, Yu X T, Li Y Q 2022 J. Zhejiang Sci-Tech Univ. (Nat. Sci. Ed. ) 47 467

    [17]

    王伟2021 硕士学位论文(南京: 南京理工大学)

    Wang W 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [18]

    周宝凯2023 硕士学位论文(郑州: 郑州大学)

    Zhou B K 2023 M. S. Thesis (Zhengzhou: Zhengzhou University

    [19]

    Li K, Yang H C, Li H N, Zhang C, Liang H Q, Xu Z K 2025 Small Struct. 6 2400470Google Scholar

    [20]

    张兴振, 靳健, 朱玉长2023膜科学与技术43 148

    Zhang X Z, Jin J, Zhu Y C 2021 Membrane Sci. Technol. 43 148

    [21]

    Lipowsky R 2018 J. Phys. Chem. B 122 3572

    [22]

    Ceyhan U, Tiktaş A, Özdoğan M 2020 Colloid Interf. Sci. Commu. 35 100238Google Scholar

    [23]

    Varnavides G, Mortensen A, Carter W C 2021 Acta Mater. 210 116831Google Scholar

    [24]

    Chowdhury I U, Mahapatra P S, Sen A K 2021 Chem. Eng. Sci. 229 116136Google Scholar

    [25]

    Goel S, Ramachandran A 2017 J. Colloid Interf. Sci. 492 199Google Scholar

    [26]

    Izri Z, Van Der Linden M N, Michelin S, Dauchot O 2014 Phys. Rev. Lett. 113 248302Google Scholar

    [27]

    Blank M, Nair P, Pöschel T 2023 Comput. Method Appl. Mech. Eng. 406 115907Google Scholar

    [28]

    Li C, Kim B, Yoon J, Sett S, Oh J 2024 Adv. Funct. Mater. 34 2308265Google Scholar

    [29]

    Cassie A B D, Baxter S 1944 Trans. Faraday Society 40 546Google Scholar

    [30]

    Ody T, Panth M, Sommers A D, Eid K F 2016 Langmuir 32 6967Google Scholar

    [31]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988Google Scholar

    [32]

    Du Q J, Zhou P, Pan Y P, Qu X, Liu L, Yu H, Hou J 2022 Chem. Eng. Sci. 249 117327Google Scholar

    [33]

    Chai G L, Hu Y X, Liu H F, Li J B, Yu J B, Liu L J, Su J W 2024 Int. J. Multiphase Flow 172 104695Google Scholar

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究.  , doi: 10.7498/aps.73.20232026
    [2] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性.  , doi: 10.7498/aps.70.20210704
    [3] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征.  , doi: 10.7498/aps.70.20201358
    [4] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析.  , doi: 10.7498/aps.69.20191755
    [5] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流.  , doi: 10.7498/aps.69.20201051
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性.  , doi: 10.7498/aps.68.20190604
    [7] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用.  , doi: 10.7498/aps.68.20190873
    [8] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型.  , doi: 10.7498/aps.67.20181230
    [9] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟.  , doi: 10.7498/aps.65.084702
    [10] 陈平, 杜亚威, 薛友林. 垂直气液两相流混沌吸引子单元面积分析.  , doi: 10.7498/aps.65.034701
    [11] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性.  , doi: 10.7498/aps.65.010501
    [12] 李大树, 仇性启, 郑志伟. 液滴碰撞液膜润湿壁面空气夹带数值分析.  , doi: 10.7498/aps.64.224704
    [13] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响.  , doi: 10.7498/aps.64.205203
    [14] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析.  , doi: 10.7498/aps.61.030508
    [15] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟.  , doi: 10.7498/aps.61.158301
    [16] 孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究.  , doi: 10.7498/aps.60.014701
    [17] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究.  , doi: 10.7498/aps.59.2601
    [18] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟.  , doi: 10.7498/aps.59.2595
    [19] 金宁德, 董 芳, 赵 舒. 气液两相流电导波动信号复杂性测度分析及其流型表征.  , doi: 10.7498/aps.56.720
    [20] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用.  , doi: 10.7498/aps.55.1005
计量
  • 文章访问数:  202
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-10
  • 修回日期:  2025-08-03
  • 上网日期:  2025-08-11

/

返回文章
返回
Baidu
map