搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拓扑光子晶体的硅光电倍增管探测效率优化

郭超前 张国青 张昊童 吴云 王军 杨延飞 刘露 刘丽娜 李连碧 韩小祥 李泽斌 韩超

引用本文:
Citation:

基于拓扑光子晶体的硅光电倍增管探测效率优化

郭超前, 张国青, 张昊童, 吴云, 王军, 杨延飞, 刘露, 刘丽娜, 李连碧, 韩小祥, 李泽斌, 韩超

Optimization of detection efficiency in silicon photomultipliers via topological photonic crystals

GUO Chaoqian, ZHANG Guoqing, ZHANG Haotong, WU Yun, WANG Jun, YANG Yanfei, LIU Lu, LIU Lina, LI Lianbi, HAN Xiaoxiang, LI Zebin, HAN Chao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 硅光电倍增管(SiPM)在微弱光探测领域已获得广泛应用. 然而基于小尺寸G-APD单元的SiPM存在有效GFF受限问题, 使其光子探测效率(PDE)相对较低. 此外, 受硅材料本征特性制约, 其在近红外波段的PDE亦相对不足. 针对上述问题, 本文提出一种基于拓扑光子晶体(TPC)的分区域光场调控方案, 旨在不改变SiPM内部结构的前提下提升其PDE. 通过COMSOL电磁波频域仿真, 揭示了死区拓扑边缘态引导、光敏区慢光效应及布拉格散射的多波段协同机制: 在460—700 nm波段, 死区蜂窝晶格通过Floquet周期性分析诱导拓扑边缘态, 同时利用晶格周期性介电分布激发布拉格散射, 减少光子在金属表面的反射损耗, 将光子精准耦合至光敏区, 其在621 nm处的有效GFF从46.4%提升至63.1%; 在700—1100 nm波段, 蜂窝晶格周期性介电分布进一步激发布拉格共振, 减少金属表面反射损耗, 同时多重散射机制显著延长光子在死区的传播路径, 提升与光敏区耦合概率; 设计的光敏区周期性硅柱结构通过慢光效应有效延长了光子横向传播路径, 同时布拉格散射减少反射损耗, 其在900 nm处的吸收效率由41.19%显著提升至51.37%. 仿真结果表明, 该设计方案使SiPM在460—1100 nm波段PDE平均提升50%(峰值达81%), 可以通过主流的刻蚀工艺(电子束光刻+反应离子刻蚀)实现. 与传统微透镜及等离激元结构相比, TPC在宽光谱响应与工艺简化方面具有显著优势. 本研究为SiPM的光子回收与PDE增强提供了拓扑光子学新路径.
    Silicon photomultipliers (SiPMs) have been widely used in the field of weak light detection. However, SiPMs utilizing small-sized Geiger-mode avalanche photodiode (G-APD) cells face the limitations due to a restricted effective geometric fill sactor (GFF), which leads to relatively low photon detection efficiency (PDE), and additionally, constrained by the intrinsic properties of silicon materials, their PDE in the near-infrared band is also relatively insufficient. To address the above issues, this work proposes a regional optical field modulation approach based on topological photonic crystals (TPCs), aiming to improve the PDE of SiPMs without modifying their internal structure. Through COMSOL electromagnetic wave frequency-domain simulation, the multi-band synergistic mechanism of dead-zone topological edge state guidance, photosensitive region slow-light effect, and Bragg scattering is revealed. In the 460–700 nm band, the honeycomb lattice in the dead zone induces topological edge states via Floquet periodic analysis, while the periodic dielectric distribution of the lattice excites Bragg scattering to reduce photon reflection loss at the metal surface and precisely couples photons to the photosensitive region, leading to an increase in effective GFF from 46.4% to 63.1% at 621 nm. In the 700–1100 nm band, the periodic dielectric distribution of the honeycomb lattice further excites Bragg resonance to reduce metal surface reflection loss, and simultaneously, the multiple scattering mechanism substantially extends the propagation path of photons in the dead zone to improve the coupling probability with the photosensitive region. The designed periodic silicon pillar structure in the photosensitive region effectively extends the lateral propagation path of photons through the slow-light effect, while Bragg scattering reduces reflection loss, resulting in a significant increase in absorption efficiency from 41.19% to 51.37% at 900 nm. Simulation results show that this design scheme increases the average PDE of SiPMs by 50% in the 460–1100 nm band (with a peak value of 81%) and can be implemented via mainstream etching processes (electron beam lithography + reactive ion etching). Compared with traditional microlens and plasmonic structures, TPCs exhibit significant advantages in broad-spectrum response and process simplification. This work provides a new topological photonics approach for photon recycling and PDE enhancement of SiPMs.
  • 图 1  SiPM表面构建拓扑光子晶体原理示意图 (a) SiPM三维结构示意图; (b) 近距离俯视图; (c) 拓扑绝缘光子晶体示意图(近距离); (d) 表面具有拓扑光子晶体的SiPM二维剖面示意图; (e) TPC二维晶格示意图; (f) Floquet周期性分析示意图; (g) 光子在TPC中传播示意图

    Fig. 1.  Schematic diagrams of the principle of constructing topological photonic crystals on the surface of SiPM: (a) Schematic diagram of the three-dimensional structure of SiPM; (b) close-up top view; (c) schematic diagram of topological insulating photonic crystal (close-up); (d) two-dimensional cross-sectional schematic diagram of SiPM with topological photonic crystals on the surface; (e) schematic diagram of TPC two-dimensional lattice; (f) schematic diagram of Floquet periodicity analysis; (g) schematic diagram of photon propagation in TPC.

    图 2  拓扑绝缘光子晶体单个晶格结构的能带图 (a) R = a0/3; (b) R = a0/2.9; (c) R = a0/3.1; (d) 边界态; (e) 布拉格散射体态; (f) 纯体态电场模分布(单位: V)

    Fig. 2.  Energy band diagrams of a single lattice structure of topological insulating photonic crystals: (a) R = a0/3; (b) R = a0/2.9; (c) R = a0/3.1; (d) boundary state; (e) Bragg scattering bulk state; (f) electric field mode distribution of pure bulk state (unit: V).

    图 3  三维仿真结构图 (a) 几何建模; (b) 光子晶体电场模分布(单位: V)

    Fig. 3.  Three-dimensional simulation structure diagrams: (a) Geometric modeling; (b) electric field mode distribution of photonic crystals (unit: V).

    图 4  不同波长下死区构建TPC的电场模分布图(单位: V) (a) 450 nm; (b) 550 nm; (c) 621 nm; (d) 650 nm; (e) 700 nm; (f) 800 nm; (g) 900 nm; (h) 1100 nm; (i) 621 nm波长下的边界态传播

    Fig. 4.  Electric field mode distribution diagrams of TPC constructed in the dead zone (unit: V) at different wavelengths: (a) 450 nm; (b) 550 nm; (c) 621 nm; (d) 650 nm; (e) 700 nm; (f) 800 nm; (g) 900 nm; (h) 1100 nm; (i) boundary state propagation at 621 nm wavelength.

    图 5  不同波长下光敏区构建TPC的电场模分布图(单位: V) (a) 460 nm; (b) 550 nm; (c) 650 nm; (d) 700 nm; (e) 900 nm; (f) 1100 nm

    Fig. 5.  Electric field mode distribution diagrams of TPC constructed in the photosensitive region (unit: V) at different wavelengths: (a) 460 nm; (b) 550 nm; (c) 650 nm; (d) 700 nm; (e) 900 nm; (f) 1100 nm.

    图 6  增强系数随波长变化的曲线

    Fig. 6.  Curve of enhancement factor varying with wavelength.

    图 7  表面有无拓扑光子晶体结构的SiPM的PDE曲线对比

    Fig. 7.  Comparison of PDE curves of SiPM with and without surface topological photonic crystal structure.

    图 8  表面集成TPC的SiPM制作工艺流程图

    Fig. 8.  Flow chart of the manufacturing process of SiPM with surface-integrated TPC.

    表 1  提升SiPM PDE的方法对比

    Table 1.  Comparison of methods for improving the PDE of SiPM.

    文献 优化方法 波段响应范围/nm PDE 提升幅度 工艺复杂度 提升峰值
    [7] 球面微透镜阵列 400—900 24% 24% (400—900 nm)
    [22] 柱面微透镜阵列 450—650 约50% 50% (450—650 nm)
    [23] 衍射微透镜阵列 500—900
    [24] 等离激元 600—850 660—690 nm达到150%, 其余波段不到30% 极高 170% (675 nm)
    本工作 拓扑光子晶体 460—1100 50%(平均) 81% (1100 nm)
    下载: 导出CSV

    表 2  硅柱直径刻蚀误差对SiPM PDE的影响

    Table 2.  Influences of silicon pillar diameter etching errors on SiPM PDE.

    硅柱直径
    偏差
    621 nm处
    有效GFF/%
    900 nm处
    吸收效率/%
    460—1100 nm波段
    PDE 平均提升/%
    无误差
    (原设计)
    63.1051.3750
    ±5 nm61.4649.8548.5
    ±10 nm59.2948.2746.8
    下载: 导出CSV
    Baidu
  • [1]

    Zhao B, Huang Y, Wang C 2024 Nucl. Instrum. Methods Phys. Res. Sect. A 1059 168975Google Scholar

    [2]

    Rignanese L P, Antonioli P, Preghenella R, Scapparone E 2024 La Riv. Nuovo Cimento 47 299Google Scholar

    [3]

    Herbert D J, Saveliev V, Belcari N, Bisogni M G, Del Guerra A, Golovin A 2004 IEEE Nuclear Science Symposium Conference Record Rome, Italy, October 16–22, 2004 p4185

    [4]

    Yan T Y, Wang X Y, Liu S T, Fan D W, Xu X Y, Zeng Q, Xie H, Yang X L, Zhu S P, Ma X P, Yuan Z, Chen X L 2022 Small Methods 6 2201105Google Scholar

    [5]

    Okino T, Yamada S, Sakata Y, Kasuga S, Takemoto M, Nose Y, Koshida H, Tamaru M, Sugiura Y, Saito S, Koyama S, Mori M, Hirose Y, Sawada M, Odagawa A, Tanaka T 2020 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, February 16–20, 2020 p9063045

    [6]

    Baker-Finch S C, McIntosh K R, Yan D, Fong K C, Kho T C 2014 J. Appl. Phys. 116 063101Google Scholar

    [7]

    Haefeli G, Blanc F, Currás-Rivera E, Marchevski R, Ronchetti F, Schneider O, Shchutska L, Trippl C, Zaffaroni E, Zunica G 2024 arXiv: 2411.09358 [hep-ex]

    [8]

    Álvarez-Garrote R, Calvo E, Canto A, Crespo-Anadón J I, Cuesta C, de la Torre Rojo A, Gil-Botella I, Manthey Corchado S, Martín I, Palomares C, Pérez-Molina L, Verdugo de Osa A 2024 Nucl. Instrum. Methods Phys. Res. Sect. A 1064 169347Google Scholar

    [9]

    Villa F, Bronzi D, Vergani M, Zou Y, Ruggeri A, Zappa F, Dalla Mora A 2014 European Solid-State Device Research Conference (ESSDERC) Grenoble, France, September 22–26, 2014 p294

    [10]

    Wang Y, Chen Z D, Li C H, He R, Wang S Y, Li B C, Wang R H, Liang K, Yang R, Han D J 2015 Nucl. Instrum. Methods Phys. Res. , Sect. A 787 38

    [11]

    贾鼎, 葛勇, 袁寿其, 孙宏祥 2019 68 224301Google Scholar

    Jia D, Ge Y, Yuan S Q, Sun H X 2019 Acta Phys. Sin. 68 224301Google Scholar

    [12]

    鲁辉, 田慧平, 李长红, 纪越峰 2009 58 2049Google Scholar

    Lu H, Tian H P, Li C H, Ji Y F 2009 Acta Phys. Sin. 58 2049Google Scholar

    [13]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [14]

    崔昊杨, 李志锋, 马法君, 陈效双, 陆卫 2010 59 7055Google Scholar

    Cui H Y, Li Z F, Ma F J, Chen X S, Lu W 2010 Acta Phys. Sin. 59 7055Google Scholar

    [15]

    Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 中国光学快报 15 12

    Receveur K, Wei K, Hadjloum M, El Gibari M, De Rossi A, Li H W, Daryoush A S 2017 Chin. Opt. Lett. 15 12

    [16]

    赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar

    Zhao C, Ma Y, Wang Y, Li H Z, Li M Z, Song M Z 2018 Acta Chim. Sin. 76 9Google Scholar

    [17]

    Zou S W, Xin Y, Jin J L, Lin Z C, He Y Y, Liang J, Yan X J, Huang J M 2025 Adv. Mater. 37 2410130

    [18]

    Wang Y, Yang Y F, Wu Y, Wang L, Liu L, Liu L N, Li L B, Han X X, Li Z B, Zhang G Q 2024 Proceedings of SPIE San Diego, CA, USA, August 12–16, 2024 p13283

    [19]

    郑煜, 郜飘飘, 唐昕, 李静, 刘洋, 张浩 2022 中南大学学报 29 3335Google Scholar

    Zheng Y, Gao P P, Tang X, Li J, Liu Y, Zhang H 2022 J. Cent. South Univ. 29 3335Google Scholar

    [20]

    毛姗姗, 李艳秋, 姜家华, 沈诗欢, 刘克, 郑猛 2018 中国光学快报 16 030801Google Scholar

    Mao S S, Li Y Q, Jiang J H, Shen S H, Liu K, Zheng M 2018 Chin. Opt. Lett. 16 030801Google Scholar

    [21]

    Zhou W M, Min G Q, Zhang J, Liu Y B, Wang J H, Zhang Y P, Sun F 2011 Nano-Micro Lett. 3 135Google Scholar

    [22]

    Gyongy I, Davies A, Gallinet B, Dutton N A W, Duncan R R, Rickman C, Henderson R K, Dalgarno P A 2018 Opt. Express 26 2280Google Scholar

    [23]

    Intermite G, McCarthy A, Warburton R E, Ren X, Villa F, Lussana R, Waddie A J, Taghizadeh M R, Tosi A, Zappa F, Buller G S 2015 Opt. Express 23 33777Google Scholar

    [24]

    Berini P 2013 Laser Photonics Rev. 8 197

  • [1] 张文杰, 张小姣, 胡树南, 詹杰, 高恩多, 王琦, 聂国政. 基于协同效应的双偏振三重等离子诱导透明.  , doi: 10.7498/aps.74.20250488
    [2] 胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政. 基于协同效应的等离子体诱导透明及光开关与慢光应用.  , doi: 10.7498/aps.74.20250078
    [3] 陈鸿翔, 刘墨点, 范智斌, 陈晓东. 低对称性能谷光子晶体中的拓扑光传输.  , doi: 10.7498/aps.73.20240040
    [4] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应.  , doi: 10.7498/aps.72.20230663
    [5] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器.  , doi: 10.7498/aps.72.20222271
    [6] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测.  , doi: 10.7498/aps.71.20221286
    [7] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响.  , doi: 10.7498/aps.71.20220537
    [8] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建.  , doi: 10.7498/aps.69.20200415
    [9] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变.  , doi: 10.7498/aps.66.224102
    [10] 郭乐慧, 田进寿, 卢裕, 李红伟. 一种用于中微子探测的3-inch光电倍增管的优化设计.  , doi: 10.7498/aps.65.228501
    [11] 周年杰, 黄伟其, 苗信建, 王刚, 董泰阁, 黄忠梅, 尹君. 量子受限效应和对称性效应对硅光子晶体禁带的影响.  , doi: 10.7498/aps.64.064208
    [12] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响.  , doi: 10.7498/aps.63.174202
    [13] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究.  , doi: 10.7498/aps.62.017805
    [14] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究.  , doi: 10.7498/aps.61.208502
    [15] 陈健, 李小丽, 李海华, 王庆康. 基于正方和六角排列结构光子晶体对发光二极管出光效率的研究.  , doi: 10.7498/aps.58.6216
    [16] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究.  , doi: 10.7498/aps.58.2049
    [17] 杜晓宇, 郑婉华, 张冶金, 任 刚, 王 科, 邢名欣, 陈良惠. 慢光在光子晶体弯折波导中的高透射传播.  , doi: 10.7498/aps.57.7005
    [18] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究.  , doi: 10.7498/aps.57.571
    [19] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法.  , doi: 10.7498/aps.52.1132
    [20] 王绍民. 光电倍增管时间分辨特性的探讨.  , doi: 10.7498/aps.18.600
计量
  • 文章访问数:  262
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-08
  • 修回日期:  2025-09-01
  • 上网日期:  2025-09-24

/

返回文章
返回
Baidu
map