搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协同效应的等离子体诱导透明及光开关与慢光应用

胡树南 李德琼 詹杰 高恩多 王琦 刘南柳 聂国政

引用本文:
Citation:

基于协同效应的等离子体诱导透明及光开关与慢光应用

胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政
cstr: 32037.14.aps.74.20250078

Synergy-based plasmon-induced transparency and optical switch and slow light applications

HU Shunan, LI Deqiong, ZHAN Jie, GAO Enduo, WANG Qi, LIU Nanliu, NIE Guozheng
cstr: 32037.14.aps.74.20250078
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 传统的多重等离子体诱导透明效应(plasmon induced transparency, PIT)的产生依赖于多个明暗模之间的耦合. 然而, 为了打破明暗模这一传统机制, 探索一种新的产生方式迫在眉睫. 本文提出一种由纵向石墨烯带和3个横向石墨烯条组成单层石墨烯超表面, 它能够通过两个单PIT之间的协同效应激发出三重PIT. 深入研究发现, 该三重PIT的物理本质源于两个单PIT之间的非相干耦合. 通过调整石墨烯的费米能级和载流子迁移率, 成功实现五频异步光开关向六频异步光开关的动态转换, 其中六频异步光开关的性能非常优异: 当频率点为3.77 THz和6.41 THz时, 调制深度和插入损耗分别达到99.31%和0.12 dB; 当频率点为4.58 THz时, 退相时间和消光比分别为3.16 ps和21.53 dB. 此外, 当调控范围集中在2.8—3.1 THz波段时, 该三重PIT体系能够展现出高达1212的群折射率. 基于以上结果, 说明该石墨烯结构有望为性能优异的慢光设备、光开关等光学器件设计提供新的理论指导.
    Surface plasmons (SPs) are generated by the interaction of conduction electrons on the surface of a metallic medium with photons in light wave, and they have an important phenomenon called plasmon-induced transparency (PIT). The PIT effect is crucial for improving the performance of nano-optical devices by strengthening the interaction between light and matter, thereby enhancing coupling efficiency. As is well known, traditional PIT is mainly achieved through two main ways: either through destructive interference between bright and dark modes, or through weak coupling between two bright modes. Therefore, it is crucial to find a new excitation method to break away from these traditional approaches. In this work, we propose a single-layer graphene metasurface composed of longitudinal graphene bands and three transverse graphene strips, which can excite a tripe-PIT through the synergistic effect between two single-PITs. We then leverage the synergistic effect between these two single-PITs to realize a triple-PIT. This approach breaks away from the traditional method of generating PIT through the coupling of bright and dark modes. The numerical simulation results are also obtained using the finite-difference time-domain, which are highly consistent with the results of the coupled-mode theory, thereby validating the accuracy of the results. In addition, by adjusting the Fermi level and carrier mobility of graphene, the dynamic transition from a five-frequency asynchronous optical switch to a six-frequency asynchronous optical switch is successfully achieved. The six-frequency asynchronous optical switch demonstrates exceptional performance: at frequency points of 3.77 THz and 6.41 THz, the modulation depth and insertion loss reach 99.31% and 0.12 dB, respectively, while at the frequency point of 4.58 THz, the dephasing time and extinction ratio are 3.16 ps and 21.53 dB, respectively. Additionally, when the tuning range is from 2.8 THz to 3.1 THz band, the triple-PIT system exhibits a remarkably high group index of up to 1212. These performance metrics exceed those of most traditional slow-light devices. Based on these results, the structure is expected to provide new theoretical ideas for designing high-performance devices, such as optical switches and slow-light devices.
      通信作者: 詹杰, 992007825@qq.com ; 聂国政, gzhnie@hnust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61905075, 62173135)、湖南省教育厅自然科学基金(批准号: 23A0454, 22A0433)和湖南省自然科学基金(批准号: 2022JJ30301, 2023JJ30195)资助的课题.
      Corresponding author: ZHAN Jie, 992007825@qq.com ; NIE Guozheng, gzhnie@hnust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905075, 62173135), the Natural Science Foundation of the Education Department of Hunan Province, China (Grant Nos. 23A0454, 22A0433), and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2022JJ30301, 2023JJ30195).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [3]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [4]

    Xia S X, Zhai X, Wang L L, Wen S C 2018 Photonics Res. 6 692Google Scholar

    [5]

    Gramotnev, Dmitri K, Bozhevolnyi, Sergey I 2010 Nat. Photonics 4 83Google Scholar

    [6]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [7]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [8]

    Fan X B, Wang G P 2006 Opt. Lett. 31 1322Google Scholar

    [9]

    Cui W, Li C J, Ma H Q, Xu H, Yi Z, Ren X H, Cao X L, He Z H, Liu Z H 2021 Physica E 134 114850Google Scholar

    [10]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [11]

    Li Z L, Nie G Z, Wang J H, Fang Z, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [12]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phy. Sin. 72 128701Google Scholar

    [13]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar

    [14]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [15]

    D’Apuzzo F, Piacenti A R, Giorgianni F, Autore M, Guidi M C, Marcelli A, Schade U, Lto Y, Chen M W, Lupi S 2017 Nat. commun. 8 14885Google Scholar

    [16]

    Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [17]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [18]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. 80 245435Google Scholar

    [19]

    Wang J Y, Zhao R Q, Yang M M, Liu Z F, Liu Z R 2013 J. Chem. Phys. 138 084701Google Scholar

    [20]

    Gan C H, Chu H S, Li E P 2012 Phys. Rev. B Condens. Matter 85 125431Google Scholar

    [21]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. photonics 6 749Google Scholar

    [22]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [23]

    Lu H, Liu X M, Mao D 2012 Phys. Rev. A 85 53803Google Scholar

    [24]

    Zhao X L, Zhu L, Yuan C, Yao J Q 2016 Opt. Lett. 41 5470Google Scholar

    [25]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano. Lett. 13 2584Google Scholar

    [26]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [27]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs. Photonics 5 1800Google Scholar

    [28]

    Jiang W J, Chen T 2021 Diam. Relat. Mater. 118 108531Google Scholar

    [29]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [30]

    Lei P L, Nie G Z, Li H L, Li Z L, Peng L, Tang X F, Gao E D 2024 Phys. Scr. 99 075512Google Scholar

    [31]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [32]

    Li J Y, Weng J, Li J Q, Chen S X, Guo Z C, Xu P B, Liu W J, Wen K H, Qin Y W 2022 J. Phys. D 55 445101Google Scholar

    [33]

    Li Y H, Xu Y P, Jiang J B, Cheng S B, Yi Z, Xiao G H, Zhou X W, Wang Z Y, Chen Z Y 2023 Phys. Chem. Chem. Phys. 25 3820Google Scholar

    [34]

    Li Y H, Xu Y P, Jiang J B, Ren L Y, Cheng S B, Yang W X, Ma C J, Zhou X W, Wang Z Y, Chen Z Y 2022 J. Phys. D 55 155101Google Scholar

    [35]

    Zhang R L, Cui Z R, Wen K H, Lv H P, Liu W J, Li C Q, Yu Y S, Liu R M 2025 Opt. Commun. 574 131083Google Scholar

    [36]

    Zheng S Q, Zhao Q X, Peng L, Jing X 2021 Results Phys. 23 104040Google Scholar

    [37]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [38]

    Liu C, Li H J, Xu H, Zhao M Z, Xiong C X, Zhang B H, Wu K 2019 J. Phys. D 52 405203Google Scholar

    [39]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [40]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. 6 7014Google Scholar

    [41]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [42]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312Google Scholar

    [43]

    Yin Y, Alivisatos A P 2005 Nature 437 664Google Scholar

    [44]

    Norris D J, Efros A L, Erwin S C 2008 Science 319 1776Google Scholar

    [45]

    Chen Y F, Johnson E, Peng X G 2007 J. Am. Chem. Soc. 129 10937Google Scholar

    [46]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [47]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [48]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [49]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [50]

    Yu S L, Wu X Q, Wang Y P, Guo X, Tong L M 2017 Adv. Mater. 29 1606128.Google Scholar

    [51]

    Koester S J, Li H, Li M 2012 Opt. Express 20 20330Google Scholar

    [52]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936Google Scholar

    [53]

    Chen S, Yi X, Ma H, Wang H 2003 Opt. Quantum Electron. 35 1351Google Scholar

    [54]

    Lu Q, Wang Z Z, Huang Q Z, Jiang W, Wang Y, Xia J S 2017 J. Lightwave. Technol. 35 1710Google Scholar

    [55]

    Boyd R W, Shi Z M 2015 Slow and Fast Light In Photonics: Scientific Foundations, Technology and Applications (Vol. 1) ( John Wiley & Sons, Inc.) pp363–385

    [56]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [57]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [58]

    Zhang X, Liu Z, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Zao Y 2020 Opt. Express 28 36771Google Scholar

    [59]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [60]

    Xie Q, Guo L H, Zhang Z X, Gao P P, Wang M, Xia F, Zhang K, Sun P, Dong L F, Yun M J 2022 Appl. Surf. Sci. 604 154575Google Scholar

    [61]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [62]

    Chang X, Li H J, Liu C, Li M, Ruan B X, Gao E D 2023 J Opt. Soc. Am. A 40 1545Google Scholar

    [63]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

  • 图 1  (a)石墨烯超材料模型结构的全视图; (b)石墨烯结构侧视图; (c)石墨烯结构俯视图, Lx = Ly = 4 μm, m1 = 2.2 μm, m2 = 2.3 μm, m3 = 0.6 μm, s1 = 0.4 μm, s2 = 0.25 μm, w1 = 0.8 μm, w2 = 0.6 μm; (d)石墨烯结构的制备流程图

    Fig. 1.  (a) Full view of the graphene metamaterial model structure; (b) side view of graphene structure; (c) top view of graphene structure, Lx = Ly = 4 μm, m1 = 2.2 μm, m2 = 2.3 μm, m3 = 0.6 μm, s1 = 0.4 μm, s2 = 0.25 μm, w1 = 0.8 μm, w2 = 0.6 μm; (d) flow chart for the preparation of graphene structures.

    图 2  耦合模理论示意图

    Fig. 2.  Schematic diagram of coupled mode theory.

    图 3  (a), (b)不同石墨烯阵列的透射光谱; (c)整体结构形成的三重PIT透射谱(EF = 1 eV, μ = 1.0 m2/(V·s)); (d) dip 1, dip 2, dip 3, dip 4对应共振频率下的电场分布图

    Fig. 3.  (a), (b) Transmission spectra of the different arrays; (c) triple-PIT transmission spectra formed by the overall structure (EF = 1 eV, μ = 1.0 m2/(V·s)); (d) plot of the electric field distribution at the corresponding resonance frequencies for dip 1, dip 2, dip 3, and dip 4.

    图 4  (a)三重PIT对应的透射光谱与石墨烯费米能级的关系; (b)不同费米能级下三维透射谱的演化

    Fig. 4.  (a) Transmission spectra corresponding to the triple PIT versus graphene Fermi energy levels; (b) evolution of 3D transmission at different Fermi energy levels.

    图 5  (a)费米能级处于0.8 eV, 1.2 eV时, 载流子迁移率μ = 1.0 m2/(V·s)情况下五频异步光开关的调制, 其中“ON”表示“打开”, “OFF”表示“关闭”; (b)费米能级处于0.8 eV, 1.2 eV, 迁移率μ = 3.0 m2/(V·s)情况下的六频光开关调制

    Fig. 5.  (a) Modulation of a five-frequency asynchronous optical switch with carrier mobility μ = 1.0 m2/(V·s) at Fermi energy levels of 0.8 eV, 1.2 eV, where “ON” means “open”, “OFF” means “close”; (b) six-frequency asynchronous optical switch modulation with Fermi energy levels at 0.8 eV, 1.2 eV and mobility μ = 3.0 m2/(V·s).

    图 6  (a)透射谱与载流子迁移率之间的关系(EF = 1.0 eV); (b)不同载流子迁移率下透射谱的演化; (c)不同载流子迁移率下Re(neff)的演化

    Fig. 6.  (a) Relationship between transmission spectrum and carrier mobility (EF = 1.0 eV); (b) the evolution of the transmission spectrum with carrier mobility; (c) the evolution of Re(neff) with carrier mobility.

    图 7  (a)—(d)费米能级EF = 0.9, 1.0, 1.1, 1.2 eV的情况下群折射率和相移随频率的变化(μ = 3.0 m2/(V·s))

    Fig. 7.  (a)–(d) Variation of group refractive index and phase shift with frequency for the Fermi energy levels EF = 0.9, 1.0, 1.1, 1.2 eV, respectively (μ = 3.0 m2/(V·s)).

    表 1  不同频率下DM, TD, LI, RE参数

    Table 1.  DM, TD, LI, RE parameters at different frequencies.

    μ = 1.0 m2/(V·s) μ = 3.0 m2/(V·s)
    Frequency/THz DM/% LI/dB TD/ps RE/dB Frequency/THz DM/% LI/dB TD/ps RE/dB
    3.12 85.46 0.14 3.57 8.02 2.56 94.53 0.70 7.12 9.89
    3.77 86.01 0.31 4.75 8.12 3.12 95.96 0.29 5.34 13.77
    4.58 96.02 0.11 4.08 13.15 3.77 99.31 0.17 4.56 17.26
    5.32 84.60 0.18 3.19 7.75 4.58 98.21 0.21 3.16 21.53
    6.41 95.12 0.26 3.70 12.03 5.32 98.65 0.18 5.97 18.24
    6.41 96.45 0. 12 3.73 16.11
    下载: 导出CSV

    表 2  不同图案化石墨烯的性能比较

    Table 2.  Comparison of the properties of different patterned graphene.

    Ref./year Modulation mode Material structure Group index DM/% LI/dB TD/ps RE/dB
    [57]/2020 Dual-frequency Single-layer patterned graphene 358 93.0 0.32
    [58]/2020 Multiple-frequency Single-layer patterned graphene 77.7 12.5
    [59]/2021 Multiple-frequency Single-layer patterned graphene 321 92.0 3.2
    [31]/2022 Multiple-frequency Single-layer patterned graphene 99.9 0.33 0.848
    [60]/2022 Multiple-frequency Single-layer patterned graphene 1100 97.1 0.04
    [61]/2023 Multiple-frequency Single-layer patterned graphene 97.7 5.4 3.86 16.41
    [62]/2023 Multiple-frequency Monolayer patterned black phosphorus 219 0.22
    [63]/2024 Multiple-frequency Single-layer patterned graphene 1000 87.5
    [30]/2024 Multiple-frequency Single-layer patterned graphene 781 98.0 0.51
    This work Multiple-frequency Single-layer patterned graphene 1212 99.3 0.120 3.16 21.53
    下载: 导出CSV
    Baidu
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [3]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [4]

    Xia S X, Zhai X, Wang L L, Wen S C 2018 Photonics Res. 6 692Google Scholar

    [5]

    Gramotnev, Dmitri K, Bozhevolnyi, Sergey I 2010 Nat. Photonics 4 83Google Scholar

    [6]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [7]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [8]

    Fan X B, Wang G P 2006 Opt. Lett. 31 1322Google Scholar

    [9]

    Cui W, Li C J, Ma H Q, Xu H, Yi Z, Ren X H, Cao X L, He Z H, Liu Z H 2021 Physica E 134 114850Google Scholar

    [10]

    Li Z L, Xie M X, Nie G Z, Wang J H, Huang L J 2023 J. Phys. Chem. Lett. 14 10762Google Scholar

    [11]

    Li Z L, Nie G Z, Wang J H, Fang Z, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [12]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phy. Sin. 72 128701Google Scholar

    [13]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165Google Scholar

    [14]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [15]

    D’Apuzzo F, Piacenti A R, Giorgianni F, Autore M, Guidi M C, Marcelli A, Schade U, Lto Y, Chen M W, Lupi S 2017 Nat. commun. 8 14885Google Scholar

    [16]

    Sun Z P, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar

    [17]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [18]

    Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. 80 245435Google Scholar

    [19]

    Wang J Y, Zhao R Q, Yang M M, Liu Z F, Liu Z R 2013 J. Chem. Phys. 138 084701Google Scholar

    [20]

    Gan C H, Chu H S, Li E P 2012 Phys. Rev. B Condens. Matter 85 125431Google Scholar

    [21]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. photonics 6 749Google Scholar

    [22]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [23]

    Lu H, Liu X M, Mao D 2012 Phys. Rev. A 85 53803Google Scholar

    [24]

    Zhao X L, Zhu L, Yuan C, Yao J Q 2016 Opt. Lett. 41 5470Google Scholar

    [25]

    Adato R, Artar A, Erramilli S, Altug H 2013 Nano. Lett. 13 2584Google Scholar

    [26]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [27]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs. Photonics 5 1800Google Scholar

    [28]

    Jiang W J, Chen T 2021 Diam. Relat. Mater. 118 108531Google Scholar

    [29]

    Zhu J, Xiong J Y 2023 Measurement 220 113302Google Scholar

    [30]

    Lei P L, Nie G Z, Li H L, Li Z L, Peng L, Tang X F, Gao E D 2024 Phys. Scr. 99 075512Google Scholar

    [31]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [32]

    Li J Y, Weng J, Li J Q, Chen S X, Guo Z C, Xu P B, Liu W J, Wen K H, Qin Y W 2022 J. Phys. D 55 445101Google Scholar

    [33]

    Li Y H, Xu Y P, Jiang J B, Cheng S B, Yi Z, Xiao G H, Zhou X W, Wang Z Y, Chen Z Y 2023 Phys. Chem. Chem. Phys. 25 3820Google Scholar

    [34]

    Li Y H, Xu Y P, Jiang J B, Ren L Y, Cheng S B, Yang W X, Ma C J, Zhou X W, Wang Z Y, Chen Z Y 2022 J. Phys. D 55 155101Google Scholar

    [35]

    Zhang R L, Cui Z R, Wen K H, Lv H P, Liu W J, Li C Q, Yu Y S, Liu R M 2025 Opt. Commun. 574 131083Google Scholar

    [36]

    Zheng S Q, Zhao Q X, Peng L, Jing X 2021 Results Phys. 23 104040Google Scholar

    [37]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019 Opt. Express 27 3598Google Scholar

    [38]

    Liu C, Li H J, Xu H, Zhao M Z, Xiong C X, Zhang B H, Wu K 2019 J. Phys. D 52 405203Google Scholar

    [39]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [40]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. 6 7014Google Scholar

    [41]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [42]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312Google Scholar

    [43]

    Yin Y, Alivisatos A P 2005 Nature 437 664Google Scholar

    [44]

    Norris D J, Efros A L, Erwin S C 2008 Science 319 1776Google Scholar

    [45]

    Chen Y F, Johnson E, Peng X G 2007 J. Am. Chem. Soc. 129 10937Google Scholar

    [46]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [47]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [48]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [49]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [50]

    Yu S L, Wu X Q, Wang Y P, Guo X, Tong L M 2017 Adv. Mater. 29 1606128.Google Scholar

    [51]

    Koester S J, Li H, Li M 2012 Opt. Express 20 20330Google Scholar

    [52]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936Google Scholar

    [53]

    Chen S, Yi X, Ma H, Wang H 2003 Opt. Quantum Electron. 35 1351Google Scholar

    [54]

    Lu Q, Wang Z Z, Huang Q Z, Jiang W, Wang Y, Xia J S 2017 J. Lightwave. Technol. 35 1710Google Scholar

    [55]

    Boyd R W, Shi Z M 2015 Slow and Fast Light In Photonics: Scientific Foundations, Technology and Applications (Vol. 1) ( John Wiley & Sons, Inc.) pp363–385

    [56]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [57]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [58]

    Zhang X, Liu Z, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Zao Y 2020 Opt. Express 28 36771Google Scholar

    [59]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhuo S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [60]

    Xie Q, Guo L H, Zhang Z X, Gao P P, Wang M, Xia F, Zhang K, Sun P, Dong L F, Yun M J 2022 Appl. Surf. Sci. 604 154575Google Scholar

    [61]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [62]

    Chang X, Li H J, Liu C, Li M, Ruan B X, Gao E D 2023 J Opt. Soc. Am. A 40 1545Google Scholar

    [63]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

计量
  • 文章访问数:  2847
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-02-22
  • 上网日期:  2025-02-25
  • 刊出日期:  2025-05-05

/

返回文章
返回
Baidu
map