搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速槽道湍流中的速度/温度壁面附着结构

李峻洋 周清清 孙东 余明 袁先旭 刘朋欣

引用本文:
Citation:

高速槽道湍流中的速度/温度壁面附着结构

李峻洋, 周清清, 孙东, 余明, 袁先旭, 刘朋欣

Wall attached strucures of velocity and tempreture fluctuations in high-speed turbulent channel flows

LI Junyang, ZHOU Qingqing, SUN Dong, YU Ming, YUAN Xianxu, LIU Pengxin
cstr: 32037.14.aps.74.20250783
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用聚类连通法, 提取高速槽道湍流中强流向速度脉动与强温度脉动对应的拟序结构. 依据空间位置, 结构被划分为壁面附着型与壁面分离型. 部分壁面附着结构在尺度上呈现自相似性, 符合Townsend (1976)附着涡假设, 据此进一步细分为矮结构、自相似结构和高结构. 条件平均结果表明, 流向雷诺正应力和温度脉动在对数区满足对数率, 这一现象同样与附着涡假设相符合; 同时, 附着结构内速度脉动与温度脉动间仍保持强雷诺比拟关系. 基于RD (Renard-Deck)分解恒等式的分析显示, 低速高结构主导了壁面摩阻和热流的生成, 而高温高结构则在法向热流传输中起主要作用.
    In this study, a clustering method is used to extract the coherent structures associated with intense streamwise velocity fluctuations and temperature fluctuations in high-speed turbulent channel flow. Based on their spatial locations, these structures are categorized into wall-attached type and wall-detached type. A subset of the wall-attached structures exhibits self-similarity in scale, consistent with Townsend (1976)’s attached eddy hypothesis, and these structures are further classified as squat structure, self-similar structure, and tall structure. Conditional averaging results indicate that the streamwise Reynolds normal stress and the intensity of temperature fluctuations follow a logarithmic law in the logarithmic layer, a phenomenon that aligns with the attached eddy hypothesis; meanwhile, the strong Reynolds analogy relationship between velocity and temperature fluctuations remains valid within these attached structures. Analysis based on the RD (Renard-Deck) identity decomposition reveals that tall structures related to low streamwise momentum mainly control the generation of wall friction and heat flux, while tall structures related to high-temperature events play a main role in the of wall-normal heat flux transfer.
      通信作者: 李峻洋, lijunyang@cardc.cn ; 刘朋欣, liupengxin@cardc.cn
    • 基金项目: 青年人才托举工程和国家自然科学基金(批准号: 12272396)资助的课题.
      Corresponding author: LI Junyang, lijunyang@cardc.cn ; LIU Pengxin, liupengxin@cardc.cn
    • Funds: Project supported by the Young Talent Lifting Project, China and the National Natural Science Foundation of China (Grant No. 12272396).
    [1]

    Smits A, McKeon B, Marusic I 2011 Annu. Rev. Fluid Mech. 43 353Google Scholar

    [2]

    Jiménez J 2012 Annu. Rev. Fluid Mech. 44 27Google Scholar

    [3]

    Kline S, Reynolds W, Schraub F, Runstadler P 1967 J. Fluid Mech. 30 741Google Scholar

    [4]

    Cheng C, Fu L 2022 Phys. Rev. Fluids 7 114604Google Scholar

    [5]

    Yu M, Xu C, Chen J, Liu P, Fu Y, Yuan X 2022 Phys. Rev. Fluids 7 054607Google Scholar

    [6]

    Townsend A 1976 The Structure of Turbulent Shear Flows (Cambridge: Cambridge University Press

    [7]

    Perry A, Chong M 1982 J. Fluid Mech. 119 173Google Scholar

    [8]

    Marusic I, Monty J. 2019 Annu. Rev. Fluid Mech. 51 49Google Scholar

    [9]

    Hutchins N, Nickels T, Marusic I, Chong M 2009 J. Fluid Mech. 635 103Google Scholar

    [10]

    Hultmark M, Vallikivi M, Bailey S, Smits A 2012 Phys. Rev. Lett. 108 094501Google Scholar

    [11]

    Hutchins N, Chauhan K, Marusic I, Monty J 2012 Boundary-Layer Meteorol. 145 273Google Scholar

    [12]

    Lee M, Moser R 2015 J. Fluid Mech. 774 395Google Scholar

    [13]

    Nickels T, Marusic I, Hafez S, Chong M 2005 Phys. Rev. Lett. 95 074501Google Scholar

    [14]

    Ahn J, Lee J, Kang J, Sung H 2015 Phys. Fluids 27 065110Google Scholar

    [15]

    Lozano D, Flores O, Jiménez J 2012 J. Fluid Mech. 694 100Google Scholar

    [16]

    Lozano D, Jiménez J 2014 J. Fluid Mech. 759 432Google Scholar

    [17]

    Dong S, Lozano D, Sekimoto A, Jiménez J 2017 J. Fluid Mech. 816 167Google Scholar

    [18]

    Lozano D A, Bae H J 2019 J. Fluid Mech. 868 698Google Scholar

    [19]

    Jiménez J 2013 Phys. Fluids 25 101302Google Scholar

    [20]

    董思卫, 程诚, 陈坚强, 袁先旭, 李伟鹏 2021 力学进展 51 792

    Dong S W, Cheng C, Chen J Q, Yuan X X, Li W P 2021 Adv. Mech. 51 792

    [21]

    Hwang J, Sung H 2018 J. Fluid Mech. 856 58

    [22]

    Yang J, Hwang J, Sung H 2019 Phys. Rev. Fluids 4 114606Google Scholar

    [23]

    Yoon M, Hwang J, Yang J, Sung H 2020 J. Fluid Mech. 885 A12Google Scholar

    [24]

    Hwang J, Lee J, Sung H 2020 J. Fluid Mech. 905 A6Google Scholar

    [25]

    Yoon M, Sung H 2022 J. Fluid Mech. 943 A14Google Scholar

    [26]

    Fukagata K, Iwamoto K, Kasagi N 2002 Phys. Fluids 14 73Google Scholar

    [27]

    Renard N, Deck S 2016 J. Fluid Mech. 790 339Google Scholar

    [28]

    Gomez T, Flutet V, Sagaut P 2009 Phys. Rev. E 79 035301

    [29]

    Zhang P, Xia Z 2020 Phys. Rev. E 102 043107

    [30]

    Wenzel C, Gibis T, Kloker M 2021 J. Fluid Mech. 930 A1

    [31]

    Li W, Fan Y, Modesti D, Cheng C 2019 J. Fluid Mech. 875 101Google Scholar

    [32]

    Sun D, Guo Q, Yuan X, Zhang H, Liu P 2021 Adv. Aerodyn. 3 1Google Scholar

    [33]

    Yu M, Xu C 2021 Phys. Fluids 33 075106Google Scholar

    [34]

    Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065139Google Scholar

    [35]

    Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065140Google Scholar

    [36]

    Huang P G, Coleman G N, Bradshaw P 1995 J. Fluid Mech. 305 185Google Scholar

  • 图 1  高速槽道湍流物理模型

    Fig. 1.  Physical model of high-speed turbulent channel flows

    图 2  不同α值下高速槽道湍流中提取得到的(a)结构数量和(b)结构体积, 分别用各自的最大值进行无量纲化

    Fig. 2.  (a) Number of structures and (b) the volume of structures extracted from high-speed turbulent channel flows under different α values, normalized by their respective maximum values.

    图 3  高速槽道湍流M8AW算例中的(a)速度壁面附着结构, (b)速度壁面分离结构, (c)温度壁面附着结构, (d)温度壁面分离结构

    Fig. 3.  (a) Velocity wall-attached structures, (b) velocity wall-detached structures, (c) temperature wall-attached structures, and (d) temperature wall-detached structures in the M8AW case of high-speed turbulent channel flow.

    图 4  高速槽道湍流M8 CW05算例中的(a)速度壁面附着结构, (b)速度壁面分离结构, (c)温度壁面附着结构, (d)温度壁面分离结构

    Fig. 4.  (a) Velocity wall-attached structures, (b) velocity wall-detached structures, (c) temperature wall-attached structures, and (d) temperature wall-detached structures in the M8 CW05 case of high-speed turbulent channel flow.

    图 5  高速槽道湍流M8 CW02算例中的(a)速度壁面附着结构, (b)速度壁面分离结构, (c)温度壁面附着结构, (d)温度壁面分离结构

    Fig. 5.  (a) Velocity wall-attached structures, (b) velocity wall-detached structures, (c) temperature wall-attached structures, and (d) temperature wall-detached structures in the M8 CW02 case of high-speed turbulent channel flow.

    图 6  高速槽道湍流中的结构数量概率分布 M8AW算例中的(a)速度结构和(b)温度结构; M8CW02算例中的(c)速度结构和(d)温度结构; M8CW05算例中的(e)速度结构和(f)温度结构

    Fig. 6.  The number of clusters per unit with respect to ${y_{\min }}$and ${y_{\max }}$: (a) Velocity and (b) temperature structures in the M8AW case; (c) velocity and (d) temperature structures in the M8CW02 case; (e) velocity and (f) temperature structures in the M8CW05 case.

    图 7  高速槽道湍流中的速度/温度壁面附着结构中的结构尺度关系 (a) $l_x^ + $-$l_y^ + $; (b) $l_z^ + $-$l_y^ + $

    Fig. 7.  Scale relations in wall attached structures for u and T: (a) $l_x^ + \text{-} l_y^ + $; (b) $l_z^ + \text{-} l_y^ + $.

    图 8  高速槽道湍流中速度壁面附着结构的条件平均结果 M8AW算例中的(a)流向雷诺正应力和(b)剪切雷诺应力; M8CW05算例中的(c)流向雷诺正应力和(d)剪切雷诺应力; M8CW02算例中的(e)流向雷诺正应力和(f)剪切雷诺应力. 其中, p和n分别代表高速和低速结构; ss, s和t分别代表自相似结构、矮结构以及高结构

    Fig. 8.  Conditional averaging results of velocity wall-attached structures in high-speed turbulent channel flow: (a) Streamwise Reynolds normal stress and (b) shear Reynolds stress in the M8AW case; (c) streamwise Reynolds normal stress and (d) shear Reynolds stress in the M8CW05 case; (e) streamwise Reynolds normal stress and (f) shear Reynolds stress in the M8CW02 case. Here, p and n denote high-speed and low-speed structures, respectively; ss, s, and t represent self-similar, squat, and tall structures, respectively.

    图 9  高速槽道湍流中温度壁面附着结构的条件平均结果 M8AW算例中的(a)温度脉动均方根和(b)湍流热通量; M8CW05算例中的(c)温度脉动均方根和(d)湍流热通量; M8CW02算例中的(e)温度脉动均方根和(f)湍流热通量. 其中, p和n分别代表高温和低温结构; ss, s 和 t 分别代表自相似结构、矮结构以及高结构

    Fig. 9.  Conditional averaging results of temperature wall-attached structures in high-speed turbulent channel flow: (a) Mean square of temperature fluctuations and (b) turbulent heat flux in the M8AW case; (c) mean square of temperature fluctuations and (d) turbulent heat flux in the M8CW05 case; (e) mean square of temperature fluctuations and (f) turbulent heat flux in the M8CW02 case. Here, p and n denote high-temperature and low-temperature structures, respectively; ss, s, and t represent self-similar, squat, and tall structures, respectively.

    图 10  高速槽道湍流中的结构条件统计下的强雷诺比拟关系 (a) M8 AW算例; (b) M8 CW05算例; (c) M8 CW02算例

    Fig. 10.  Strong Reynolds analogy under conditional averaging in high-speed turbulent channel flows: (a) Case M8 AW; (b) Case M8 CW05; (c) Case M8 CW02.

    表 1  不同算例的网格与流动参数

    Table 1.  Grid and flow parameters for different cases.

    算例${{{T_{\text{w}}}} \mathord{\left/ {\vphantom {{{T_{\text{w}}}} {{T_{\text{r}}}}}} \right. } {{T_{\text{r}}}}}$$R{e_\tau }$${M_{\text{b}}}$${M_{\text{c}}}$$\Delta {x^ + }$$\Delta y_{\text{w}}^ + $$\Delta {z^ + }$
    M8 AW1.05044.446.935.50.502.7
    M8 CW050.54504.616.154.80.462.4
    M8 CW020.25404.796.039.90.592.9
    下载: 导出CSV

    表 2  不同速度结构下湍动能生成项对壁面摩阻的贡献占比$ {{{C_{{\text{f, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{f, T}}}}} {{C_{\text{f}}}}}} \right. } {{C_{\text{f}}}}} $

    Table 2.  Contribution percentage, $ {{{C_{{\text{f, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{f, T}}}}} {{C_{\text{f}}}}}} \right. } {{C_{\text{f}}}}} $ of the turbulent kinetic energy production term to wall friction under different velocity structures.

    Case $ \text{N, ss} $ $ \text{N, s} $ $ \text{N, t} $ $ \text{P, ss} $ $ \text{P, s} $ $ \text{P, t} $ Total
    M8 AW 3.22 0.32 6.26 1.88 1.35 5.40 42.11
    M8 CW05 3.71 0.13 7.10 1.66 1.27 3.70 38.84
    M8 CW02 2.21 0.15 9.61 2.01 0.73 2.70 37.20
    下载: 导出CSV

    表 3  不同速度结构下生成项对壁面热流的贡献占比$ {{{C_{{\text{h, RS}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, RS}}}}} {{C_{\text{h}}}}}} \right. } {{C_{\text{h}}}}} $

    Table 3.  Contribution percentage, $ {{{C_{{\text{h, RS}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, RS}}}}} {{C_h}}}} \right. } {{C_h}}} $ of the production term to wall heat flux under different velocity structures.

    Case $ \mathit{\text{N, ss}} $ $ \text{N, s} $ $ \text{N, t} $ $ \text{P, ss} $ $ \text{P, s} $ $ \text{P, t} $ Total
    M8 CW05 6.66 0.16 14.24 2.33 1.38 6.32 69.21
    M8 CW02 3.00 0.10 14.19 2.09 0.58 3.40 50.56
    下载: 导出CSV

    表 4  不同速度结构下湍流热输运项对壁面热流的贡献占比$ {{{C_{{\text{h, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, T}}}}} {{C_{\text{h}}}}}} \right. } {{C_{\text{h}}}}} $

    Table 4.  Contribution percentage, $ {{{C_{{\text{h, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, T}}}}} {{C_{\text{h}}}}}} \right. } {{C_{\text{h}}}}} $ of the turbulent heat transport term to wall heat flux under different velocity structures.

    Case $ \text{N, ss} $ $ \text{N, s} $ $ \text{N, t} $ $ \text{P, ss} $ $ \text{P, s} $ $ \text{P, t} $ Total
    M8CW05 –0.21 0.33 –0.62 –0.36 0.11 –3.00 –24.95
    M8CW02 0.00 0.93 –0.24 –0.01 0.08 –1.22 –8.08
    下载: 导出CSV
    Baidu
  • [1]

    Smits A, McKeon B, Marusic I 2011 Annu. Rev. Fluid Mech. 43 353Google Scholar

    [2]

    Jiménez J 2012 Annu. Rev. Fluid Mech. 44 27Google Scholar

    [3]

    Kline S, Reynolds W, Schraub F, Runstadler P 1967 J. Fluid Mech. 30 741Google Scholar

    [4]

    Cheng C, Fu L 2022 Phys. Rev. Fluids 7 114604Google Scholar

    [5]

    Yu M, Xu C, Chen J, Liu P, Fu Y, Yuan X 2022 Phys. Rev. Fluids 7 054607Google Scholar

    [6]

    Townsend A 1976 The Structure of Turbulent Shear Flows (Cambridge: Cambridge University Press

    [7]

    Perry A, Chong M 1982 J. Fluid Mech. 119 173Google Scholar

    [8]

    Marusic I, Monty J. 2019 Annu. Rev. Fluid Mech. 51 49Google Scholar

    [9]

    Hutchins N, Nickels T, Marusic I, Chong M 2009 J. Fluid Mech. 635 103Google Scholar

    [10]

    Hultmark M, Vallikivi M, Bailey S, Smits A 2012 Phys. Rev. Lett. 108 094501Google Scholar

    [11]

    Hutchins N, Chauhan K, Marusic I, Monty J 2012 Boundary-Layer Meteorol. 145 273Google Scholar

    [12]

    Lee M, Moser R 2015 J. Fluid Mech. 774 395Google Scholar

    [13]

    Nickels T, Marusic I, Hafez S, Chong M 2005 Phys. Rev. Lett. 95 074501Google Scholar

    [14]

    Ahn J, Lee J, Kang J, Sung H 2015 Phys. Fluids 27 065110Google Scholar

    [15]

    Lozano D, Flores O, Jiménez J 2012 J. Fluid Mech. 694 100Google Scholar

    [16]

    Lozano D, Jiménez J 2014 J. Fluid Mech. 759 432Google Scholar

    [17]

    Dong S, Lozano D, Sekimoto A, Jiménez J 2017 J. Fluid Mech. 816 167Google Scholar

    [18]

    Lozano D A, Bae H J 2019 J. Fluid Mech. 868 698Google Scholar

    [19]

    Jiménez J 2013 Phys. Fluids 25 101302Google Scholar

    [20]

    董思卫, 程诚, 陈坚强, 袁先旭, 李伟鹏 2021 力学进展 51 792

    Dong S W, Cheng C, Chen J Q, Yuan X X, Li W P 2021 Adv. Mech. 51 792

    [21]

    Hwang J, Sung H 2018 J. Fluid Mech. 856 58

    [22]

    Yang J, Hwang J, Sung H 2019 Phys. Rev. Fluids 4 114606Google Scholar

    [23]

    Yoon M, Hwang J, Yang J, Sung H 2020 J. Fluid Mech. 885 A12Google Scholar

    [24]

    Hwang J, Lee J, Sung H 2020 J. Fluid Mech. 905 A6Google Scholar

    [25]

    Yoon M, Sung H 2022 J. Fluid Mech. 943 A14Google Scholar

    [26]

    Fukagata K, Iwamoto K, Kasagi N 2002 Phys. Fluids 14 73Google Scholar

    [27]

    Renard N, Deck S 2016 J. Fluid Mech. 790 339Google Scholar

    [28]

    Gomez T, Flutet V, Sagaut P 2009 Phys. Rev. E 79 035301

    [29]

    Zhang P, Xia Z 2020 Phys. Rev. E 102 043107

    [30]

    Wenzel C, Gibis T, Kloker M 2021 J. Fluid Mech. 930 A1

    [31]

    Li W, Fan Y, Modesti D, Cheng C 2019 J. Fluid Mech. 875 101Google Scholar

    [32]

    Sun D, Guo Q, Yuan X, Zhang H, Liu P 2021 Adv. Aerodyn. 3 1Google Scholar

    [33]

    Yu M, Xu C 2021 Phys. Fluids 33 075106Google Scholar

    [34]

    Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065139Google Scholar

    [35]

    Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065140Google Scholar

    [36]

    Huang P G, Coleman G N, Bradshaw P 1995 J. Fluid Mech. 305 185Google Scholar

  • [1] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法.  , 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [2] 王伟, 出口祥啓, 何永森, 张家忠. 涡脱落热声振荡中相似性及涡声锁频行为.  , 2019, 68(23): 234303. doi: 10.7498/aps.68.20190663
    [3] 杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究.  , 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [4] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究.  , 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究.  , 2015, 64(18): 180502. doi: 10.7498/aps.64.180502
    [6] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究.  , 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [7] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用.  , 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [8] 吴文堂, 洪延姬, 范宝春. 确定分布的展向Lorentz力调制下的槽道湍流涡结构.  , 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [9] 付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新. 缩比间隙中辉光放电相似性的初步研究.  , 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [10] 岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜. 草原下垫面湍流动量和感热相似性函数及总体输送系数的特征.  , 2012, 61(21): 219201. doi: 10.7498/aps.61.219201
    [11] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究.  , 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [12] 沈毅, 徐焕良. 加权网络权重自相似评判函数及其社团结构检测.  , 2010, 59(9): 6022-6028. doi: 10.7498/aps.59.6022
    [13] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻.  , 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [14] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性.  , 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [15] 廖龙光, 付虹, 傅秀军. 十二次对称准周期结构的自相似变换及准晶胞构造.  , 2009, 58(10): 7088-7093. doi: 10.7498/aps.58.7088
    [16] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究.  , 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [17] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性.  , 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [18] 钟锡华. 自相似结构的谱函数.  , 1990, 39(6): 59-66. doi: 10.7498/aps.39.59
    [19] 张珉, 陶瑞宝, 周世勋. 具有自相似结构的非均匀复合媒质质量分布的标度指数.  , 1988, 37(12): 1987-1992. doi: 10.7498/aps.37.1987
    [20] 刘叔仪. 最小摩阻场.  , 1958, 14(1): 1-8. doi: 10.7498/aps.14.1
计量
  • 文章访问数:  401
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-18
  • 修回日期:  2025-08-26
  • 上网日期:  2025-09-04
  • 刊出日期:  2025-10-20

/

返回文章
返回
Baidu
map