搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢中多组分V1–x FexC碳化物结构和物性的第一性原理研究

张东 孙宜华 尹朝朝

引用本文:
Citation:

钢中多组分V1–x FexC碳化物结构和物性的第一性原理研究

张东, 孙宜华, 尹朝朝

First-principles study on structures and physical properties of multicomponent V1–x FexC carbides in steel

ZHANG Dong, SUN Yihua, YIN Chaochao
cstr: 32037.14.aps.74.20250713
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 钒碳化物通常作为金属材料的增强相, 其弹性和延展-脆性特性对于力学性能至关重要. 本研究基于特殊准随机结构(SQS)方法和第一性原理计算系统探讨了多组分V1–x FexC系碳化物的稳定性、电子结构、机械性能和热性质随元素Fe含量变化的规律. 研究结果表明, 5种组分(V0.125Fe0.875C, V0.25Fe0.75C, V0.5Fe0.5C, V0.75Fe0.25C和V0.875Fe0.125C)随着元素Fe含量的减小稳定性提高, V1–x FexC系碳化物键合类型以共价键、金属键和离子键的混合特征为主. 相较于V1–x FexC系其他碳化物, V0.875Fe0.125C由于具有高的共价键强度, 因此表现出高的弹性模量和硬度, 元素Fe的掺杂引入显著影响V1–x FexC碳化物的晶格振动模式和电子结构, V0.875Fe0.125C碳化物较高的德拜温度, 同样印证了其高温下优异的机械强度. 此外, 热导率的计算不仅指导V1–x FexC系碳化物的实验选择, 同时为开发高性能耐高温涂层提供重要的理论支持.
    Vanadium carbides commonly serve as strengthening phases in metallic materials, where their elastic and ductile-brittle characteristics are critical for mechanical performance. This work systematically investigates the structural stability, electronic properties, mechanical behaviors, and thermal characteristics of multi-component V1–x FexC carbides by using first-principles calculations, aiming to elucidate the influence of Fe content on their physical properties and provide a theoretical basis for the design and application of carbides in high-performance steels. The calculations are performed using the Vienna ab initio simulation package (VASP) based on density functional theory (DFT). Special quasirandom structures (SQS) are employed to construct five carbide models with varying Fe/V ratios (from V0.125Fe0.875C to V0.875Fe0.125C). Key parameters including formation enthalpy, electronic density of states, elastic constants, Debye temperature, and thermal conductivity are computed. The results indicate that as the Fe content decreases, the formation enthalpy shifts from positive to negative, reflecting a significant improvement in thermodynamic stability. Electronic structure analyses reveal metallic behavior of all compositions, with stronger covalent bonding in V–C than that in Fe–C. The V0.875Fe0.125C carbide exhibits the highest elastic modulus (C11 = 615.80 GPa) and Vickers hardness (21.06 GPa), which is attributed to its strong covalent interactions, though it also shows increased brittleness. The Debye temperature rises with the decrease of Fe content, further confirming superior mechanical strength at elevated temperatures. Calculations of the thermal conductivity for V0.875Fe0.125C yield values of 9.427 W·m1·K1 at 300 K and 2.357 W·m1·K1 at 1300 K. Its minimum lattice thermal conductivity (2.001 W·m1·K1) is comparable to that of typical thermal barrier coating materials, demonstrating high potential for high-temperature thermal insulation. This study reveals the structure-property relationships in V1–x FexC carbides on an atomic scale, indicating that low-Fe compositions are advantageous for high-temperature and high-strength applications. These findings provide important theoretical support for the development of novel heat-resistant coatings and high-strength steels.
      通信作者: 孙宜华, sunny.hust@ctgu.edu.cn ; 尹朝朝, ycc0125@126.com
    • 基金项目: 国家重点研发计划 (批准号: 2023YFB3812200)、湖北省自然科学基金创新发展联合基金(批准号: 2025AFD412)、水电机械设备设计与维护湖北省重点实验室(三峡大学)开放基金(批准号: 2025KJX07)、冶金工业过程系统科学湖北省重点实验室(武汉科技大学)开放基金(批准号: Y202301)和三峡大学科研启动基金(批准号: 2023RCKJ0031)资助的课题.
      Corresponding author: SUN Yihua, sunny.hust@ctgu.edu.cn ; YIN Chaochao, ycc0125@126.com
    • Funds: Project supported by the National Key Research and Development Program, China (Grant No. 2023YFB3812200), the Natural Science Foundation Innovation Development Joint Fund of Hubei Province, China (Grant No. 2025AFD412), the Open Fund of the Hubei Key Laboratory of Hydroelectric Mechanical Equipment Design and Maintenance (China Three Gorges University), China (Grant No. 2025KJX07), the Open Fund of the Hubei Key Laboratory of System Science for Metallurgical Industry Processes (Wuhan University of Science and Technology), China (Grant No. Y202301), and the Scientific Research Start Fund of Three Gorges University, China (Grant No. 2023RCKJ0031).
    [1]

    Williams W S 1971 Prog. Solid State Chem. 6 57Google Scholar

    [2]

    Chen Y, Ye C, Chen X, Hu H 2024 Metals 14 175Google Scholar

    [3]

    康俊雨, 孙新军, 李昭东, 雍岐龙 2015 钢铁 50 64Google Scholar

    Kang J L, Sun X J, Li Z D, Yong Q L 2015 Iron and Steel 50 64Google Scholar

    [4]

    Giang N A, Kuna M, Hütter G 2017 Theor. Appl. Fract. Mech. 92 89Google Scholar

    [5]

    Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401Google Scholar

    [6]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [7]

    Li X T, Zhang X Y, Qin J Q, Zhang S H, Ning J L, Jing R, Ma M Z, Liu R P 2014 J. Phys. Chem. Solids 75 1234Google Scholar

    [8]

    Zhang D, Tang X H, Humphries E, Li D Y 2023 Wear 523 204808Google Scholar

    [9]

    Sun C C, Zheng Y, Chen L L, Fang F, Zhou X F, Jiang J Q 2022 J. Alloys Compd. 895 162649Google Scholar

    [10]

    Zhang D, Hou T P, Quan X L, Zhou J, Yin C C, Lin H F, Lu Z H, Wu K M 2023 J. Mater. Res. Technol. 25 210Google Scholar

    [11]

    Kohn W, Becke A D, Parr R G 1996 J. Phys. Chem. 100 12974Google Scholar

    [12]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [13]

    van de Walle A, Tiwary P, de Jong M, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [14]

    Yu R, Zhu J, Ye H Q 2010 Comput. Phys. Commun. 181 671Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    Zhang D, Xiang R, Sun Y 2025 Mol. Phys. 123 e2379994Google Scholar

    [17]

    Kobayashi S, Ikuhara Y, Mizoguchi T 2018 Phy. Rev. B 98 134114Google Scholar

    [18]

    Mishra S, Ganguli B 2013 J. Solid State Chem. 200 279Google Scholar

    [19]

    Yamada K, Yosida K, Hanzawa K 1992 Prog. Theor. Phys. Suppl. 108 141Google Scholar

    [20]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [21]

    Guo L Q, Tang Y Q, Cui J, Li J Q, Yang J R, Li D Y 2021 Scr. Mater. 190 168Google Scholar

    [22]

    Wu Y, Ma L S, Zhou X L, Duan Y H, Shen L, Peng M J 2022 Int. J. Refract. Met. Hard Mater 109 105985Google Scholar

    [23]

    Zhang D, Hou T P, Liang X, Zheng P, Zheng Y H, Lin H F, Wu K M 2022 Vacuum 203 111175Google Scholar

    [24]

    Soni P, Pagare G, Sanyal S P 2011 J. Phys. Chem. Solids 72 810Google Scholar

    [25]

    Zuo L, Humbert M, Esling C 1992 J. Appl. Crystallogr. 25 751Google Scholar

    [26]

    Pugh S F 1954 Lond. Edinb. Phil. Mag. 45 823Google Scholar

    [27]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [28]

    Niu H, Niu S, Oganov A R 2019 J. Appl. Phys. 125 065105Google Scholar

    [29]

    Munro R G, Freiman S W, Baker T L 1998 Natl. Inst. Stand. Technol. 158 6153Google Scholar

    [30]

    王坤, 徐鹤嫣, 郑雄, 张海丰 2025 74 137101Google Scholar

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 137101Google Scholar

    [31]

    Yang J, Shahid M, Wan C, Jing F, Pan W 2017 J. Eur. Ceram. Soc. 37 689Google Scholar

    [32]

    Shindé S L, Goela J 2006 High Thermal Conductivity Materials (New York: Springer) pp111–123

    [33]

    Arab F, Sahraoui F A, Haddadi K, Bouhemadou A, Louail L 2016 Phase Transit. 89 480Google Scholar

    [34]

    Ahmed T, Roknuzzaman M, Sultana A, Biswas A, Safin A M, Saiduzzaman M, Hossain K M 2021 Mater. Today Commun. 29 102973Google Scholar

    [35]

    Vagge S T, Ghogare S 2022 Mater. Today 56 1201Google Scholar

    [36]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742Google Scholar

    [37]

    Feng J, Xiao B, Zhou R, Pan W, Clarke D R 2012 Acta Mater. 60 3380Google Scholar

  • 图 1  试样钢微观组织以及定性表征元素分布 (a)微观组织形貌; (b)高角环形暗场像; (c) HRTEM-EDS能谱面扫和(d)线扫图

    Fig. 1.  Microstructure of sample steel and distribution of qualitatively characterised elements: (a) Microstructural morphology; (b) high-angle annular dark-field image; (c) HRTEM-EDS energy spectrum area scan and (d) line scan image.

    图 2  V1–x FexC碳化物晶体结构 (a) VC; (b) V0.125Fe0.875C; (c) V0.25Fe0.75C; (d) V0.5Fe0.5C; (e) V0.75Fe0.25C; (f) V0.875Fe0.125C

    Fig. 2.  Crystal structure of V1–x FexC carbides: (a) VC; (b) V0.125Fe0.875C; (c) V0.25Fe0.75C; (d) V0.5Fe0.5C; (e) V0.75Fe0.25C; (f) V0.875Fe0.125C

    图 3  V1–x FexC碳化物的TDOS和PDOS (a) V0.125Fe0.875C; (b) V0.25Fe0.75C; (c) V0.5Fe0.5C; (d) V0.75Fe0.25C; (e) V0.875Fe0.125C

    Fig. 3.  TDOS and PDOS of V1–x FexC carbides: (a) V0.125Fe0.875C; (b) V0.25Fe0.75C; (c) V0.5Fe0.5C; (d) V0.75Fe0.25C; (e) V0.875Fe0.125C

    图 4  V1–x FexC碳化物的声速(纵波vl、剪切波vs和平均声速vm)以及德拜温度($ \theta_{\text{D}} $)

    Fig. 4.  Calculated sound velocities (long wave vl, shear wave vs, and average sound velocity vm), and Debye temperature ($ \theta_{\text{D}} $) of V1–x FexC carbides.

    表 1  X射线能谱分析下的碳化物元素含量

    Table 1.  Elemental content of carbides after energy-dispersive X-ray spectroscopy.

    元素原子百分比/%质量分数/%
    C4.471.04
    Fe60.9666.11
    V27.3527.06
    Cr1.161.17
    Mn2.292.44
    Other elements3.772.18
    下载: 导出CSV

    表 2  V1–x FexC碳化物结构晶胞参数、形成焓(ΔHf)、金属性(fm)和Bader电荷

    Table 2.  Calculated structural cell parameters, formation energy (ΔHf), metallicness (fm) and Bader charge of V1–x FexC carbides

    a b c $\alpha $/(°) $\beta $/(°) γ/(°) ΔHf/( meV·atom–1) fm Bader
    V0.125Fe0.875C 8.061 8.065 8.063 90.08 89.99 89.95 0.443 0.548 0.840
    V0.25Fe0.75C 8.106 8.107 8.107 90.00 90.00 90.01 0.321 0.622 0.914
    V0.5Fe0.5C 8.203 8.188 8.195 90.00 90.00 90.00 0.042 0.844 1.052
    V0.75Fe0.25C 8.262 8.261 8.258 89.92 90.08 89.99 –0.230 0.971 1.146
    V0.875Fe0.125C 8.287 8.287 8.288 89.93 90.00 89.97 –0.439 1.19 1.213
    下载: 导出CSV

    表 3  V1–x FexC碳化物的弹性常数Cij、体积模量BH、剪切模量GH、杨氏模量E、泊松比$\nu $、普格模量比BH/GH、硬度HV、断裂韧性KIC以及脆性指数$ {{M}}_{{x}} $

    Table 3.  Calculated elastic constants Cij, bulk modulus BH, shear modulus GH, Young’s modulus E, Poisson’s ratio $\nu $, Pugh modulus ratio BH/GH, hardness HV, fracture toughness KIC, and brittleness index $ {{M}}_{{x}} $ of V1–x FexC carbides.

    碳化物 C11/GPa C12/GPa C44/GPa BH/GPa GH/GPa BH/GH E $\nu $ HV/GPa KIC/(MPa·m1/2) Mx/μm–1/2
    VC 668.78 138.75 200.00 315.43 223.89 1.41 543.15 0.345 28.73 3.83
    648.24[24] 156.88[24] 209.99[24] 318[9] 213[9] 1.49[9] 521[9] 0.356[9] 25.8[9]
    V0.125Fe0.875C 552.84 165.68 75.32 294.40 110.79 2.657 442.11 0.333 8.49 2.564 3.310
    V0.25Fe0.75C 553.84 155.42 86.486 288.10 121.67 2.368 319.96 0.315 10.34 2.665 3.878
    V0.5Fe0.5C 563.87 152.52 113.41 289.61 144.23 2.008 371.09 0.286 14.06 2.925 4.808
    V0.75Fe0.25C 584.01 148.76 149.97 293.96 174.39 1.686 436.80 0.252 19.63 3.254 6.034
    V0.875Fe0.125C 615.80 154.92 162.02 308.46 186.60 1.650 465.87 0.248 21.06 3.450 6.104
    下载: 导出CSV

    表 4  V1–x FexC碳化物沿[100], [110]和[111]方向的声速(m/s)

    Table 4.  Calculated sound velocities (m/s) along [100], [110], and [111] directions of V1–x FexC carbides.

    V0.125Fe0.875C V0.25Fe0.75C V0.5Fe0.5C V0.75Fe0.25C V0.875Fe0.125C
    [100][100]vl9003.429126.029446.389820.1610182.71
    [010]vs13323.253606.304236.444976.315223.03
    [001]vs23323.253606.304236.444976.315223.03
    [110][110]vl7982.578144.528639.039233.819600.33
    $[1{\bar 1}0] $vs15327.685473.245705.145994.676229.07
    [001]vs23323.253606.304236.444976.315223.03
    [111][111]vl7611.927789.928352.5929029.919398.19
    $ [11{\bar 2}] $vs14754.384930.125261.335675.555912.77
    $[11{\bar 2}] $vs24754.384930.125261.335675.555912.77
    下载: 导出CSV

    表 5  V1–x FexC碳化物的格林艾森参数γ, Aγ, $\delta $, Mav, 晶格热导率kph以及最小晶格热导率kmin

    Table 5.  Calculated Grüneisen parameter γ, Aγ, $ \delta$, Mav, lattice thermal conductivity kph, and minimum lattice thermal conductivity kmin of V1–x FexC carbides.

    碳化物 γ Aγ /(10–8) V $\delta $/Å Mav/(kg·mol–1) n kph(300)/(W·m–1·K–1) kph(1300)/(W·m¹·K–1) kmin/(W·m–1·K–1)
    V0.125Fe0.875C 1.996 3.039 524.18 2.016 22.413 64 2.139 0.535 1.536
    V0.25Fe0.75C 1.869 3.075 532.81 2.027 22.208 64 2.873 0.718 1.609
    V0.5Fe0.5C 1.692 3.132 550.38 2.049 21.800 64 4.729 1.182 1.752
    V0.75Fe0.25C 1.511 3.199 563.61 2.065 21.392 64 8.183 2.046 1.929
    V0.875Fe0.125C 1.492 3.206 569.15 2.072 21.188 64 9.427 2.357 2.001
    下载: 导出CSV
    Baidu
  • [1]

    Williams W S 1971 Prog. Solid State Chem. 6 57Google Scholar

    [2]

    Chen Y, Ye C, Chen X, Hu H 2024 Metals 14 175Google Scholar

    [3]

    康俊雨, 孙新军, 李昭东, 雍岐龙 2015 钢铁 50 64Google Scholar

    Kang J L, Sun X J, Li Z D, Yong Q L 2015 Iron and Steel 50 64Google Scholar

    [4]

    Giang N A, Kuna M, Hütter G 2017 Theor. Appl. Fract. Mech. 92 89Google Scholar

    [5]

    Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401Google Scholar

    [6]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [7]

    Li X T, Zhang X Y, Qin J Q, Zhang S H, Ning J L, Jing R, Ma M Z, Liu R P 2014 J. Phys. Chem. Solids 75 1234Google Scholar

    [8]

    Zhang D, Tang X H, Humphries E, Li D Y 2023 Wear 523 204808Google Scholar

    [9]

    Sun C C, Zheng Y, Chen L L, Fang F, Zhou X F, Jiang J Q 2022 J. Alloys Compd. 895 162649Google Scholar

    [10]

    Zhang D, Hou T P, Quan X L, Zhou J, Yin C C, Lin H F, Lu Z H, Wu K M 2023 J. Mater. Res. Technol. 25 210Google Scholar

    [11]

    Kohn W, Becke A D, Parr R G 1996 J. Phys. Chem. 100 12974Google Scholar

    [12]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [13]

    van de Walle A, Tiwary P, de Jong M, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [14]

    Yu R, Zhu J, Ye H Q 2010 Comput. Phys. Commun. 181 671Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    Zhang D, Xiang R, Sun Y 2025 Mol. Phys. 123 e2379994Google Scholar

    [17]

    Kobayashi S, Ikuhara Y, Mizoguchi T 2018 Phy. Rev. B 98 134114Google Scholar

    [18]

    Mishra S, Ganguli B 2013 J. Solid State Chem. 200 279Google Scholar

    [19]

    Yamada K, Yosida K, Hanzawa K 1992 Prog. Theor. Phys. Suppl. 108 141Google Scholar

    [20]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [21]

    Guo L Q, Tang Y Q, Cui J, Li J Q, Yang J R, Li D Y 2021 Scr. Mater. 190 168Google Scholar

    [22]

    Wu Y, Ma L S, Zhou X L, Duan Y H, Shen L, Peng M J 2022 Int. J. Refract. Met. Hard Mater 109 105985Google Scholar

    [23]

    Zhang D, Hou T P, Liang X, Zheng P, Zheng Y H, Lin H F, Wu K M 2022 Vacuum 203 111175Google Scholar

    [24]

    Soni P, Pagare G, Sanyal S P 2011 J. Phys. Chem. Solids 72 810Google Scholar

    [25]

    Zuo L, Humbert M, Esling C 1992 J. Appl. Crystallogr. 25 751Google Scholar

    [26]

    Pugh S F 1954 Lond. Edinb. Phil. Mag. 45 823Google Scholar

    [27]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [28]

    Niu H, Niu S, Oganov A R 2019 J. Appl. Phys. 125 065105Google Scholar

    [29]

    Munro R G, Freiman S W, Baker T L 1998 Natl. Inst. Stand. Technol. 158 6153Google Scholar

    [30]

    王坤, 徐鹤嫣, 郑雄, 张海丰 2025 74 137101Google Scholar

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 137101Google Scholar

    [31]

    Yang J, Shahid M, Wan C, Jing F, Pan W 2017 J. Eur. Ceram. Soc. 37 689Google Scholar

    [32]

    Shindé S L, Goela J 2006 High Thermal Conductivity Materials (New York: Springer) pp111–123

    [33]

    Arab F, Sahraoui F A, Haddadi K, Bouhemadou A, Louail L 2016 Phase Transit. 89 480Google Scholar

    [34]

    Ahmed T, Roknuzzaman M, Sultana A, Biswas A, Safin A M, Saiduzzaman M, Hossain K M 2021 Mater. Today Commun. 29 102973Google Scholar

    [35]

    Vagge S T, Ghogare S 2022 Mater. Today 56 1201Google Scholar

    [36]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742Google Scholar

    [37]

    Feng J, Xiao B, Zhou R, Pan W, Clarke D R 2012 Acta Mater. 60 3380Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算.  , 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 王宇航, 袁猛, 明平剑. 物性参数对液滴的聚并自弹跳的影响及其关联分析.  , 2021, 70(12): 124702. doi: 10.7498/aps.70.20201714
    [3] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [4] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究.  , 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [5] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算.  , 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [6] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性.  , 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [7] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [8] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [9] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [10] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [11] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究.  , 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [12] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [13] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [14] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [15] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [16] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [17] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算.  , 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
计量
  • 文章访问数:  329
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-08-27
  • 上网日期:  2025-09-24

/

返回文章
返回
Baidu
map