-
在能源结构转型背景下,开发高效储热材料是提升太阳能热发电技术的关键。硝酸熔盐因热稳定性优异、储热密度高而被广泛应用,但其性能优化多依赖传统实验与模拟方法,存在效率低、成本高等问题。本研究引入固体与分子经验电子理论(EET),系统分析了硝酸盐MNO3(M=Li,Na,K)及其分解产物亚硝酸盐MNO2的价电子结构、结合能和熔点,揭示了其物性与价电子结构之间的关联机制。计算的键长、结合能和熔点与实验相符。结果表明:其结合能与价电子成正相关;熔融源于M-O键的断键,其价电子对数与熔点呈显著正相关。研究了二元硝酸盐的液相线与价电子结构的关联性,计算的液相线与实验相符。通过优化价电子结构,可调控液化温度。应用热动力学理论预测二元硝酸熔盐的结合粘度、电导率和热导率。通过物性综合优化,筛选出0.5LiNO3-0.5NaNO3等低液化温度、低粘度、高电导率、高热导率的二元硝酸盐成分。本研究为硝酸熔盐成分设计提供了电子结构层面的依据。Nitrate molten salt is widely used as high-efficiency thermal storage material for advancing concentrated solar power (CSP) technology, which is due to their many excellent properties such as thermal stability, high energy density, low viscosity and liquefaction temperature. However, the measurements of properties for nitrates are not convenient at high temperature melting state for long time period, which can cause the corrosion of storage vessel made by stainless steel by nitrates salt, and the theoretical simulations are also faced to large challenge of complicate models and long computing period for optimizing the performance of nitrate molten salts. In this study, an empirical electron theory (EET) of solids and molecules is used to investigate the valence electron structure, cohesive energy, and melting points of MNO3 (M = Li, Na, K) and their decomposition byproducts (nitrites) systematically for revealing the mechanism of these properties. The calculated bond lengths, cohesive energy, and melting points of nitrate molten salt agree with the experimental ones. The study reveals the strongly dependence of physical properties upon the valence electron structure. The bonding strength and ability strongly depend upon the covalent electron pairs nα. The cohesive energy exhibits a positive correlation with the number of valence electrons nc. The melting mechanism is originated from the melting broken of M-O (M = Li, Na, K) bond by the vibrating of thermal phonon at melting temperature, it is suggested the atomic cluster of NO3 is still stabilized during the melting process. In binary nitrate molten-salts, the calculated liquidus lines match the measured ones in their binary phase diagrams well. The liquid temperatures show significant positive correlation with the weighted average of number of covalent electron pairs (nM-O) on M-O bond. The thermodynamic simulation models are used systematically to predict the viscosity, electrical conductivity, and thermal conductivity of the binary nitrate molten-salts. Based on calculations of EET and thermodynamic simulations, the binary nitrates molten salts are optimized with compositions of 0.5LiNO3-0.5NaNO3、0.5LiNO3-0.5KNO3 and 0.6NaNO3-0.4KNO3, which are suggested as good candidates for advanced molten salts with high thermal and electrical conductivity, low viscosity, and low liquefaction temperature.
-
Keywords:
- nitrates /
- valence electron structure /
- melting point /
- cohesive energy
-
[1] Xu D, Yu C L, Li F, Yang Y, Li B L, Lu L, Lin Y C 2024 MR 38 33 (in Chinese)[许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨 2024 材料导报 38 33]
[2] Zhang H T, Zhao Y J, Zhang P, Shi L J, Li J L, Kang W Q, Huang P J, Wang M 2015 MR 29 54 (in Chinese)[张宏韬, 赵有璟, 张萍, 时历杰, 李锦丽, 康为清, 黄培锦, 王敏 2015 材料导报 29 54]
[3] Chen D, Lv H K, Ling L W, Lai Z Y, Xiao G, Zhu P W 2024 Acta Energ. Sol. Sin. 45 432 (in Chinese)[陈冬, 吕洪坤, 丁历威, 来振亚, 肖刚, 祝培旺 2024 太阳能学报 45 432]
[4] Fan G, Song J, Gong X Y, Fu Z J, Zhang J G, Dai Y P 2024 Acta Energ. Sol. Sin. 45 590 (in Chinese)[范刚, 宋健, 宫啸宇, 傅子隽, 张嘉耕, 戴义平 2024 太阳能学报 45 590]
[5] Bajaj I, Peng X, Maravelias C T 2024 RSC Sustain. 2 943
[6] Sun H, Su X Z, Zhang P, Wang J Q 2017 Corros. Sci. Prot. Technol. 29 282 (in Chinese)[孙华, 苏兴治, 张鹏, 王建强 2017 腐蚀科学与防护技术 29 282]
[7] Li B, Zheng Y, Shao X, Jiang Z, Zhang X, Wang W, Lu J, Li Y 2023 Int. J. Refract. Met. Hard Mater. 112 106162
[8] Mohammad M B, Cadusch P, Brooks G A, Rhamdhani M A 2018 Metall. Mater. Trans. B 49 3580
[9] Wang T, Mantha D, Reddy R G 2012 Solar Sol. Mat 100 162
[10] Kramer C M, Wilson C J 1980 Thermochim. Acta 42 253
[11] Greis O, Bahamdan K M, Uwais B M 1985 Thermochim. Acta 86 343
[12] Maeso M J, Largo J 1993 Thermochim. Acta 223 145
[13] Zang X J, Tian J, Xu K C, Gao Y C 2003 J. Phase Equilib. 24 441
[14] Chen J, Zeng D W, Li D D, Wang J T, Han H J, Guo L J 2015 Inorg. Chem. Ind. 47 38 (in Chinese)[陈静, 曾德文, 李东东, 王军涛, 韩海军, 郭立江 2015 无机盐工业 47 38]
[15] Mochinaga J, Ohtani H, Igarashi K 1981 Bunseki Kagaku 49 19
[16] Bonk A, Braun M, Bauer T 2022 Sol. Energy 231 1061
[17] Zhong Y, Wang M, Wang H, Yuan J S 2021 Sol. Energy Mater. Sol. Cells 230 111148
[18] Li X 2019 Ph. D. Dissertation (Shanghai:Shanghai Institute of Applied Physics)[李想 2019 多元熔盐储能材料的相图热力学计算及热物性研究 博士学位论文 (上海:中国科学院上海应用物理研究所)]
[19] Luo H H, Shen Q, Lin J G, Zhang Y M, Xu Y K 2020 Energ. Storage Sci. Technol. 9 1755 (in Chinese)[罗海华, 沈强, 林俊光, 张艳梅, 徐云柯 2020 储能科学与技术 9 1755]
[20] Wang X, Guo Y, Li B, Feng Y, Tang W 2025 Phys. E:Low-Dimens. Syst. Nanostructures 165 116124
[21] Yang Z Y, Guo Y Q, Zhang X P, Tang W, Li B Y, Feng Y C 2024 J. Energy Storage 91 111963
[22] Lv M Z, Xu B, Cai L C, Jia F, Yuan X D 2019 Chin. Phys. Lett. 36 013101
[23] Li B, Zheng Y, Shao X, Jiang Z Y, Zhang X, Wang W W, Lu J, Li Y F 2023 Int. J. Refract. Met. Hard Mater. 112 106162
[24] Fu B Q, Liu W, Li Z L 2009 Appl. Surf. Sci. 255 8511
[25] Fu B Q, Liu W, Li Z L 2010 Appl. Surf. Sci. 256 6899
[26] Li S, Ma C L, Hou X H, Wang H L, Shi C X, Guo R, Zhou Y 2022 J. Alloys Compd. 907 164409
[27] Yin L H, Guo Y Q, Guo X P 2022 Inorg. Chem. 61 2402
[28] Feng Y, Guo Y, Yao Y, Liu W, Li B, Yin L, Wang T 2023 J. Phys. Chem. C 127 21328
[29] Wang T, Guo Y Q, Wang C 2021 Chin. Phys. B 30 043101
[30] Guo Y Q, Su T, Zhang J, Wang X Q, Chen Y, Zhao X 2020 ACS Appl. Energy Mater. 3 5361
[31] Li B Y, Guo Y Q, Yang Z Y, Wang X Z, Feng Y C, Tang W, Peng S Q, Su T 2024 Phys. Chem. Chem. Phys. 26 25819
[32] Zhang X P, Yang Z Y, Tang W, Li B Y, Feng Y C, Zhao X, Guo Y Q, Li B R 2024 Ordn. Mater. Sci. Eng. 1 11 (in Chinese)[张晓鹏, 杨震宇, 唐玮, 李博洋, 冯奕晨, 赵兴, 郭永权, 李宝让 2024 兵器材料科学与工程 1 11]
[33] Guo Y, Yü R, Zhang R, Zhang X, Tao K 1998 J. Phys. Chem. B 102 9
[34] Yu R H 1978 Sci. Bull 23 217
[35] Rao C, Prakash B, Natarajan M 1975 Crystal Structure Transformations in Inorganic Nitrites Nitrates and Carbonates (1st Edition) (Washington, D.C.:U.S. Government Printing Office) p3
[36] Benages-Vilau R, Calvet T, Cuevas-Diarte M A 2014 Crystallogr. Rev. 20 25
[37] Zachariasen W H 1929 GFF 51 123
[38] Gonschorek G, Weitzel H, Miehe G, Fuess H, Schmahl W W 2000 Z. Kristallogr.-Cryst. Mater. 215 752
[39] Solbakk J K, Strømme K O, Rasmussen S E, Smidsrød O, Lindberg A A, Jansen G, Lamm B, Samuelsson B 1969 Acta Chem. Scand. 23 20
[40] Schiebel P, Altenburger W, Hoser A, Prandl W, Hiller W 1990 Z. Kristallogr.-Cryst. Mater. 190 63
[41] Predel, F, Predel, B 2016 Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys (Volume 12D) (Berlin:Springer) p1
[42] Kittel, C 2004 Introduction to Solid State Physics (8th Edition) (New York:John Wiley & Sons) p1
[43] Mohammad M B, Cadusch P, Brooks G A, Rhamdhani M A 2018 Metall. Mater. Trans. B 49 3580
[44] Janz G J 1968 Molten Salts 1 139
[45] Abe Y, Kosugiyama O, Nagashima A 1981 J. Nucl. Mater. 99 173
[46] Wakao M, Minami K, Nagashima A 1991 Int. J. Thermophys. 12 223
[47] Sato Y, Fukasawa M, Yamamura T 1997 Int. J. Thermophys. 18 1123
[48] Bloomfield V A, Dewan R 1971 J. Phys. Chem. 75 3113
[49] Fujiwara S, Inaba M, Tasaka A 2010 J. Power Sources 195 7691
[50] Fujiwara S, Inaba M, Tasaka A 2011 J. Power Sources 196 4012
[51] Gheribi A E, Torres J A, Chartrand P 2014 Sol. Energy Mater. Sol. Cells 126 11
[52] Li Y Y, Xu X K, Wang X X, Li P W, Hao Q, Xiao B 2017 Sol. Energy 152 57
[53] Hossain M Z, Kassaee M H, Jeter S, Teja A S 2014 Int. J. Thermophys. 35 246
[54] Hu C X 2018 M. S. Thesis (Beijing:Beijing University of Technology)[胡春旭 2018 纯组分及混合熔融盐粘度的研究 硕士学位论文 (北京:北京工业大学)]
[55] Murgulescu I G, Zuca S 1969 Electrochim. Acta 14 519
[56] Murgulescu I G, Zuca S 1966 Electrochim. Acta 11 1383
[57] Stern K H 1972 J. Phys. Chem. Ref. Data 1 747
计量
- 文章访问数: 26
- PDF下载量: 1
- 被引次数: 0