-
石墨烯等离激元在红外-太赫兹波段具有高度局域化和动态可调性,但其精准调控机制仍需深入探索。本研究基于国产第一性原理计算软件ABACUS,采用线性响应含时密度泛函理论方法,结合截断库仑势消除层间耦合效应,系统研究了石墨烯狄拉克等离激元的三类调控机制。研究结果表明,无论采用何种调控手段,石墨烯狄拉克等离激元的色散关系均呈现出典型的双区域特征:在长波区域,其色散关系遵循√q的形式;而在短波区域,则逐渐过渡为准线性行为。此外,随着载流子浓度的增加,等离激元的激发能量呈现系统性增强,并遵循ω∝n1/4的标度律;施加双轴应变时,等离激元激发能量随晶格常数的增大而线性降低;引入六方氮化硼(hBN)作为基底时,对原始结果影响较小,仅导致整体能量发生轻微红移。进一步地,研究深入揭示了上述三种调控机制的物理起源。这些结果为基于石墨烯/hBN异质结构的高性能动态光电器件设计提供了坚实的理论支撑。
-
关键词:
- 第一性原理计算 /
- 石墨烯 /
- 线性响应含时密度泛函理论 /
- 狄拉克等离激元
Graphene Dirac plasmons, which are collective oscillations of charge carriers behaving as massless Dirac fermions, have emerged as a transformative platform for nanophotonics due to their exceptional capability for deep subwavelength light confinement in the infrared to terahertz spectral regions and their unique dynamic tunability. While external controls such as electrostatic doping, mechanical strain, and substrate engineering are empirically known to modulate plasmonic responses, a comprehensive and quantitative theoretical framework from first principles is essential to decipher the distinct effciency and fundamental mechanisms of each tuning strategy. To address this, we present a systematic first-principles investigation into three primary modulation pathways-carrier density, biaxial strain, and substrate integration-using linear-response time-dependent density functional theory within the random-phase approximation (LR-TDDFT-RPA) as implemented in the computational code ABACUS. A truncated Coulomb potential was incorporated to accurately model the isolated two-dimensional system, while structural and electronic properties were computed using the PBE functional with SG15 norm-conserving pseudopoten- tials and van der Waals corrections for heterostructures. Our findings reveal that modulating carrier concentration shifts the plasmon dispersion following the characteristic ω∝ n1/4 scaling, enabling a wide tuning range from 0.45 eV to 1.38 eV at the Landau damping threshold-a 207% change for carrier densities from 0.005 to 0.1 electrons per unit cell, albeit with diminishing effciency at higher concentrations due to the sublinear nature of the scaling law. Biaxial strain linearly alters the plasmon energy by modifying the Fermi velocity (vF ) near the Dirac point, yielding a 30.4% tuning range (0.78-1.12 eV) under ±10% strain. Introducing an hBN substrate induces a small band gap (∼ 43 meV) and causes a general redshift in plasmon energy due to band renormalization, while remarkably preserving the linear straintuning capability with a 30.1% energy range (0.72-1.03 eV) in the heterostructure, demonstrating robust compatibility between strain engineering and substrate integration. These results quantitatively elucidate the distinct physical mechanisms-Fermi level shifting, Fermi velocity modification, and substrate-induced symmetry breaking and hybridization-underpinning each strategy, thereby providing a solid theoretical foundation for the design of dynamically tunable optoelectronic devices based on graphene and its van der Waals heterostructures.-
Keywords:
- First-principles calculations /
- Graphene /
- Linear-response time-dependent density functional theory (LR-TDDFT) /
- Dirac plasmons
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D e, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[3] Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132
[4] Yang X X, Kong X T, Dai Q 2018 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2018 64 106801]
[5] Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 73 157802 (in Chinese) [杨肖杰,许辉,徐海烨,李铭,于鸿飞,成昱轩,侯海良,陈智全 2024 67 157802]
[6] Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435
[7] Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369
[8] Fei Z, Rodin A, Andreev G O, Bao W Z, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82
[9] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Javier García de Abajo F, Hillenbrand R, Koppens F H L 2012 Nature 487 77
[10] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421
[11] Basov D N, Fogler M M, García de Abajo F J 2016 Science 354 aag1992
[12] Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165
[13] Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64
[14] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749
[15] Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187
[16] Zhang H Y, Fan X D, Wang D L, Zhang D B, Li X G, Zeng C G 2022 Phys. Rev. Lett. 129 237402
[17] Zhao W Y, Wang S X, Chen S D, Zhang Z C, Kenji W, Takashi T, Alex Z, Wang F 2023 Nature 614 688
[18] Li P F, Ren X G, He L X 2017 Phys. Rev. B 96 165417
[19] Ju L, Geng B S, Jason H, Caglar G, Michael M, Hao Z, A B H, Liang X, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630
[20] Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394
[21] Ni G X, Wang L, Goldflam M, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Neto A H C, Hone J, Fogler M M, Basov D N 2016 Nat. Photon. 10 244
[22] Chen M H, Guo G C, He L X 2010 J. Phys. Condens. Mat. 22 445501
[23] Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C, He L X 2016 Comp. Mater. Sci. 112 503
[24] Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Wu Y Y, Li G L, Camden J P 2017 Chem. Rev. 118 2994
[27] Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601
[28] Silkin V M, Chulkov E V, Echenique P M 2004 Phys. Rev. Lett. 93 176801
[29] Yuan Z, Gao S W 2009 Comput. Phys. Commun. 180 466
[30] Mowbray D J 2014 Phys. Status Solidi B 251 2509
[31] Li P F, Shi R, Lin P Z, Ren X G 2023 Phys. Rev. B 107 035433
[32] Li P F, Hui N J 2025 Vacuum 240 114424
[33] Adler S L 1962 Phys. Rev. 126 413
[34] Wiser N 1963 Phys. Rev. 129 62
[35] Petersilka M, Gossmann U J, Gross E K U 1996 Phys. Rev. Lett. 76 1212
[36] Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119
[37] Antonio P, Gennaro C 2014 Nanoscale 6 10927
[38] Pisarra M, Sindona A, Riccardi P, Silkin V M, Pitarke J M 2014 New J. Phys. 16 083003
[39] Pines D 1956 Can. J. Phys. 34 1379
[40] Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418
[41] Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403
[42] Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318
[43] Marchiani D, Tonelli A, Mariani C, Frisenda R, Avila J, Dudin P, Jeong S, Ito Y, Magnani F S, Biagi R, et al. 2022 Nano Lett. 23 170
[44] Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385
[45] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30
[46] Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N 2009 Nat. Nanotechnol. 4 562
[47] Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801
[48] Yasumasa H, Keita K 2012 Phys. Rev. B 86 165430
[49] Wang L J, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147
[50] Drogowska-Horna K A, Mirza I, Rodriguez A, Kovaříček P, Sládek J, Derrien T J Y, Gedvilas M, Račiukaitis G, Frank O, Bulgakova N M, Kalbáč M 2020 Nano Res. 13 2332
[51] Lyu B S, Chen J J, Wang S, Lou S, Shen P Y, Xie J X, Qiu L, Mitchell I, Li C, Hu C, Zhou X L, Watanabe K, Taniguchi T, Wang X Q, Jia J F, Liang Q, Chen G, Li T X, Wang S Y, Ouyang W G, Hod O, Ding F, Urbakh M, Shi Z W 2024 Nature 628 758
[52] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, et al. 2010 Nat. Nanotechnol. 5 722
[53] Cassabois G, Valvin P, Gil B 2016 Nat. Photon. 10 262
[54] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404
[55] Luo M, Zhou Y, Cheng T T, Meng Y X, Wang Y J, Xian J C, Qin J Y, Yu C H 2024 Acta Photon. Sin. 53 0753307 (in Chinese) [罗曼,周杨,成田恬,孟雨欣,王奕锦,鲜佳赤,秦嘉怡,余晨辉 2024 光子学报 53 0753307]
[56] Geim A K, Grigorieva I V 2013 Nature 499 419
[57] Grimme S 2006 J. Comput. Chem. 27 1787
计量
- 文章访问数: 17
- PDF下载量: 1
- 被引次数: 0