搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯狄拉克等离激元调控的第一性原理研究

李鹏飞 韩丽君 张琳 惠宁菊

引用本文:
Citation:

石墨烯狄拉克等离激元调控的第一性原理研究

李鹏飞, 韩丽君, 张琳, 惠宁菊

Modulation of Graphene Dirac Plasmons: A First-Principles Study

LI Pengfei, HAN Lijun, ZHANG Lin, HUI Ningju
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 石墨烯等离激元在红外-太赫兹波段具有高度局域化和动态可调性,但其精准调控机制仍需深入探索。本研究基于国产第一性原理计算软件ABACUS,采用线性响应含时密度泛函理论方法,结合截断库仑势消除层间耦合效应,系统研究了石墨烯狄拉克等离激元的三类调控机制。研究结果表明,无论采用何种调控手段,石墨烯狄拉克等离激元的色散关系均呈现出典型的双区域特征:在长波区域,其色散关系遵循√q的形式;而在短波区域,则逐渐过渡为准线性行为。此外,随着载流子浓度的增加,等离激元的激发能量呈现系统性增强,并遵循ω∝n1/4的标度律;施加双轴应变时,等离激元激发能量随晶格常数的增大而线性降低;引入六方氮化硼(hBN)作为基底时,对原始结果影响较小,仅导致整体能量发生轻微红移。进一步地,研究深入揭示了上述三种调控机制的物理起源。这些结果为基于石墨烯/hBN异质结构的高性能动态光电器件设计提供了坚实的理论支撑。
    Graphene Dirac plasmons, which are collective oscillations of charge carriers behaving as massless Dirac fermions, have emerged as a transformative platform for nanophotonics due to their exceptional capability for deep subwavelength light confinement in the infrared to terahertz spectral regions and their unique dynamic tunability. While external controls such as electrostatic doping, mechanical strain, and substrate engineering are empirically known to modulate plasmonic responses, a comprehensive and quantitative theoretical framework from first principles is essential to decipher the distinct effciency and fundamental mechanisms of each tuning strategy. To address this, we present a systematic first-principles investigation into three primary modulation pathways-carrier density, biaxial strain, and substrate integration-using linear-response time-dependent density functional theory within the random-phase approximation (LR-TDDFT-RPA) as implemented in the computational code ABACUS. A truncated Coulomb potential was incorporated to accurately model the isolated two-dimensional system, while structural and electronic properties were computed using the PBE functional with SG15 norm-conserving pseudopoten- tials and van der Waals corrections for heterostructures. Our findings reveal that modulating carrier concentration shifts the plasmon dispersion following the characteristic ω∝ n1/4 scaling, enabling a wide tuning range from 0.45 eV to 1.38 eV at the Landau damping threshold-a 207% change for carrier densities from 0.005 to 0.1 electrons per unit cell, albeit with diminishing effciency at higher concentrations due to the sublinear nature of the scaling law. Biaxial strain linearly alters the plasmon energy by modifying the Fermi velocity (vF ) near the Dirac point, yielding a 30.4% tuning range (0.78-1.12 eV) under ±10% strain. Introducing an hBN substrate induces a small band gap (∼ 43 meV) and causes a general redshift in plasmon energy due to band renormalization, while remarkably preserving the linear straintuning capability with a 30.1% energy range (0.72-1.03 eV) in the heterostructure, demonstrating robust compatibility between strain engineering and substrate integration. These results quantitatively elucidate the distinct physical mechanisms-Fermi level shifting, Fermi velocity modification, and substrate-induced symmetry breaking and hybridization-underpinning each strategy, thereby providing a solid theoretical foundation for the design of dynamically tunable optoelectronic devices based on graphene and its van der Waals heterostructures.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D e, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Allen M J, Tung V C, Kaner R B 2010 Chem. Rev. 110 132

    [4]

    Yang X X, Kong X T, Dai Q 2018 Acta Phys. Sin. 64 106801 (in Chinese) [杨晓霞, 孔祥天, 戴庆 2018 64 106801]

    [5]

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024 Acta Phys. Sin. 73 157802 (in Chinese) [杨肖杰,许辉,徐海烨,李铭,于鸿飞,成昱轩,侯海良,陈智全 2024 67 157802]

    [6]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [7]

    Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369

    [8]

    Fei Z, Rodin A, Andreev G O, Bao W Z, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [9]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Javier García de Abajo F, Hillenbrand R, Koppens F H L 2012 Nature 487 77

    [10]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421

    [11]

    Basov D N, Fogler M M, García de Abajo F J 2016 Science 354 aag1992

    [12]

    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo F J, Pruneri V, Altug H 2015 Science 349 165

    [13]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [14]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749

    [15]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187

    [16]

    Zhang H Y, Fan X D, Wang D L, Zhang D B, Li X G, Zeng C G 2022 Phys. Rev. Lett. 129 237402

    [17]

    Zhao W Y, Wang S X, Chen S D, Zhang Z C, Kenji W, Takashi T, Alex Z, Wang F 2023 Nature 614 688

    [18]

    Li P F, Ren X G, He L X 2017 Phys. Rev. B 96 165417

    [19]

    Ju L, Geng B S, Jason H, Caglar G, Michael M, Hao Z, A B H, Liang X, Alex Z, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630

    [20]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394

    [21]

    Ni G X, Wang L, Goldflam M, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Neto A H C, Hone J, Fogler M M, Basov D N 2016 Nat. Photon. 10 244

    [22]

    Chen M H, Guo G C, He L X 2010 J. Phys. Condens. Mat. 22 445501

    [23]

    Li P F, Liu X H, Chen M H, Lin P Z, Ren X G, Lin L, Yang C, He L X 2016 Comp. Mater. Sci. 112 503

    [24]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Wu Y Y, Li G L, Camden J P 2017 Chem. Rev. 118 2994

    [27]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [28]

    Silkin V M, Chulkov E V, Echenique P M 2004 Phys. Rev. Lett. 93 176801

    [29]

    Yuan Z, Gao S W 2009 Comput. Phys. Commun. 180 466

    [30]

    Mowbray D J 2014 Phys. Status Solidi B 251 2509

    [31]

    Li P F, Shi R, Lin P Z, Ren X G 2023 Phys. Rev. B 107 035433

    [32]

    Li P F, Hui N J 2025 Vacuum 240 114424

    [33]

    Adler S L 1962 Phys. Rev. 126 413

    [34]

    Wiser N 1963 Phys. Rev. 129 62

    [35]

    Petersilka M, Gossmann U J, Gross E K U 1996 Phys. Rev. Lett. 76 1212

    [36]

    Rozzi C A, Varsano D, Marini A, Gross E K U, Rubio A 2006 Phys. Rev. B 73 205119

    [37]

    Antonio P, Gennaro C 2014 Nanoscale 6 10927

    [38]

    Pisarra M, Sindona A, Riccardi P, Silkin V M, Pitarke J M 2014 New J. Phys. 16 083003

    [39]

    Pines D 1956 Can. J. Phys. 34 1379

    [40]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

    [41]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [42]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [43]

    Marchiani D, Tonelli A, Mariani C, Frisenda R, Avila J, Dudin P, Jeong S, Ito Y, Magnani F S, Biagi R, et al. 2022 Nano Lett. 23 170

    [44]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [45]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30

    [46]

    Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N 2009 Nat. Nanotechnol. 4 562

    [47]

    Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801

    [48]

    Yasumasa H, Keita K 2012 Phys. Rev. B 86 165430

    [49]

    Wang L J, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147

    [50]

    Drogowska-Horna K A, Mirza I, Rodriguez A, Kovaříček P, Sládek J, Derrien T J Y, Gedvilas M, Račiukaitis G, Frank O, Bulgakova N M, Kalbáč M 2020 Nano Res. 13 2332

    [51]

    Lyu B S, Chen J J, Wang S, Lou S, Shen P Y, Xie J X, Qiu L, Mitchell I, Li C, Hu C, Zhou X L, Watanabe K, Taniguchi T, Wang X Q, Jia J F, Liang Q, Chen G, Li T X, Wang S Y, Ouyang W G, Hod O, Ding F, Urbakh M, Shi Z W 2024 Nature 628 758

    [52]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, et al. 2010 Nat. Nanotechnol. 5 722

    [53]

    Cassabois G, Valvin P, Gil B 2016 Nat. Photon. 10 262

    [54]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404

    [55]

    Luo M, Zhou Y, Cheng T T, Meng Y X, Wang Y J, Xian J C, Qin J Y, Yu C H 2024 Acta Photon. Sin. 53 0753307 (in Chinese) [罗曼,周杨,成田恬,孟雨欣,王奕锦,鲜佳赤,秦嘉怡,余晨辉 2024 光子学报 53 0753307]

    [56]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [57]

    Grimme S 2006 J. Comput. Chem. 27 1787

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , doi: 10.7498/aps.73.20240489
    [2] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , doi: 10.7498/aps.73.20240992
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算.  , doi: 10.7498/aps.72.20221630
    [4] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响.  , doi: 10.7498/aps.72.20230736
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , doi: 10.7498/aps.71.20211631
    [6] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , doi: 10.7498/aps.71.20211796
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , doi: 10.7498/aps.70.20211631
    [8] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究.  , doi: 10.7498/aps.70.20210621
    [9] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , doi: 10.7498/aps.70.20201619
    [10] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , doi: 10.7498/aps.69.20191645
    [11] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , doi: 10.7498/aps.68.20190903
    [12] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , doi: 10.7498/aps.68.20190523
    [13] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算.  , doi: 10.7498/aps.67.20172491
    [14] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究.  , doi: 10.7498/aps.67.20180867
    [15] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究.  , doi: 10.7498/aps.66.107102
    [16] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算.  , doi: 10.7498/aps.66.057301
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , doi: 10.7498/aps.64.108402
    [18] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算.  , doi: 10.7498/aps.63.154601
    [19] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算.  , doi: 10.7498/aps.60.036104
    [20] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析.  , doi: 10.7498/aps.59.7880
计量
  • 文章访问数:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-17

/

返回文章
返回
Baidu
map