搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料与人工视觉系统的多维融合: 前沿突破与范式革新

闻雨 韩素婷 周晔

引用本文:
Citation:

二维材料与人工视觉系统的多维融合: 前沿突破与范式革新

闻雨, 韩素婷, 周晔

Multidimensional heterogeneous integration of two-dimensional materials and artificial visual systems: Frontier innovations and paradigm-shifting advancements

WEN Yu, HAN Suting, ZHOU Ye
cstr: 32037.14.aps.74.20250703
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 人工视觉系统因在医疗诊断、机器视觉等领域具备广泛应用前景而备受关注, 但其发展长期受限于传统材料的物理瓶颈. 近年来, 二维半导体材料由于其出色的光电性能和原子级厚度, 被认为是构建人工视觉系统的革命性平台. 最新研究表明二维材料的可调谐带隙与高效光电转换特性已被成功应用于单目三维视差重建, 其动态成像速率可达传统器件的3倍以上. 尽管如此, 该领域仍面临显著挑战, 如二维材料大面积制备工艺复杂性, 宽光谱响应, 高帧率感知与低功耗平衡难题等问题. 这些问题的解决将推动人工传感系统向更智能、更精密的方向突破, 实现从仿生视网膜到类脑智能体的跃迁.
    Artificial visual system (AVS) has received increasing attention for their transformative potential in fields such as medical diagnostics, intelligent robotics, and machine vision. Traditional silicon-based imaging technologies, however, face significant limitations, including high energy consumption, limited dynamic range, and integration challenges. Two-dimensional (2D) semiconductor materials, such as MoS2, WSe2, and black phosphorus have emerged as promising alternatives due to their atomically thin structure, tunable bandgaps, high carrier mobility, and superior optoelectronic properties. In this work, recent breakthroughs in the integration of 2D materials with AVS are investigated. Highlighted is the development of a reconfigurable four-terminal phototransistor array based on WSe2 and IGZO heterostructures, which enables monocular 3D disparity reconstruction without the need for multiple cameras or active light sources. The system demonstrates a dynamic imaging rate exceeding 33 frames per second and supports real-time sensing, memory storage, and ambipolar mode switching with ultralow power consumption (as low as 142 pW). Key innovations include multifunctional device architectures that simulate the retinal photoreceptors, bipolar cells, and even neural synapses, achieving functions such as image sensing, real-time adaptation, color recognition, motion tracking, and multimodal perception. Furthermore, by simulating the human neurovisual pathways, these 2D material-based devices can potentially realize in-sensor computing and neuromorphic processing, which substantially reduce data transfer bottlenecks and energy overhead. Nonetheless, the field is still in its formative stage. Here, several critical bottlenecks are emphasized: the lack of scalable, defect-controlled synthesis of 2D heterostructures; the limited spectral bandwidth and color fidelity of current photonic components; the immature state of neuromorphic elements, which often lacks stability, long-term memory, and bio-realistic plasticity. Moreover, the practical integration with real-world applications requires compatibility with high-density manufacturing and dynamic, multi-modal environments. In the future, artificial vision platforms, empowered by engineered 2D materials and heterostructures, will develop into highly compact, intelligent, and context-aware agents capable of autonomous perception and interaction in complex real-world settings.
      通信作者: 周晔, yezhou@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62304137)、广东省自然科学基金(批准号: 2023A1515012479, 2024B1515040002)和广东省研究生教育创新计划 (批准号: 2025JGXM_151)资助的课题.
      Corresponding author: ZHOU Ye, yezhou@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62304137), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2023A1515012479, 2024B1515040002), and the Graduate Education Innovation Plan Project of Guangdong Province, China (Grant No. 2025JGXM_151).
    [1]

    Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46Google Scholar

    [2]

    Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84Google Scholar

    [3]

    Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275Google Scholar

    [4]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [5]

    沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 71 148505Google Scholar

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 148505Google Scholar

    [6]

    Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010Google Scholar

    [7]

    廖付友, 柴扬 2021 物理 50 378Google Scholar

    Liao F Y, Cai Y, 2021 PHYSICS 50 378Google Scholar

    [8]

    Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208Google Scholar

    [9]

    Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128Google Scholar

    [10]

    Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751

    [11]

    Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968Google Scholar

    [12]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [13]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101Google Scholar

    [14]

    李璐, 张养坤, 时东霞, 张广宇 2022 71 108102Google Scholar

    Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 108102Google Scholar

    [15]

    Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802Google Scholar

    [16]

    Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505Google Scholar

    [17]

    Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2025 2502072

    [18]

    Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503Google Scholar

    [19]

    Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446Google Scholar

    [20]

    Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404Google Scholar

    [21]

    Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043Google Scholar

    [22]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [23]

    Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173Google Scholar

    [24]

    Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27Google Scholar

    [25]

    Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650Google Scholar

    [26]

    Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261Google Scholar

    [27]

    Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257Google Scholar

  • 图 1  可重构PCHT架构[1] (a) PCHT结构示意图; (b) PCHT阵列的光学图像; (c) 三维视差可重构原理. 引用图片已获相关授权

    Fig. 1.  Reconfigurable PCHT architecture[1]: (a) Schematic diagram of reconfigurable PCHT, array and chip; (b) optical image of our monolithic integrated reconfigurable PCHT array; (c) 3D parallax reconstruction principle. Reproduced with permission from Springer Nature.

    图 2  PCHT模型光电特性[1] (a) 动态成像模式工作机制模型; (b) 静态成像模式工作机制模型; (c) 双极型模式工作机制模型; (d) PCHT等效电路图; (e)—(g) 动态模式响应; (h)—(j) 静态模式响应. 引用图片已获相关授权

    Fig. 2.  PCHT mode-dependent optoelectronic performance[1]: (a) Model of the operation mechanism of the dynamic imaging mode with temporal-dependent storage; (b) model of the operating mechanism of the constant perception mode for static imaging; (c) model of the operation mechanism of the ambipolar mode; (d) equivalent functional circuit of the reconfigurable PCHT; (e)–(g) dynamic mode response; (h)–(j) static mode response. Reproduced with permission from Springer Nature.

    图 3  三维视差重建演示[1] (a) 可重构PCHT阵列硬件架构示意图; (b) 可重构PCHT阵列算法示意图; (c) 三维形态重构; (d) 二维深度场重构; (e) 多角度耦合重构; (f) 眼球形态的感知与重构. 引用图片已获相关授权

    Fig. 3.  3-dimensional (3D) parallax reconstruction demonstration[1]: (a) Schematic of the reconfigurable PCHT array hardware architecture; (b) algorithmic methodology of the 3D parallax reconstruction; (c) stereo morphology reconstruction of a complex object assembly. Scale bars, 10, 5 and 5 pixels in x, y, z, respectively; (d) 2D depth field mapping of two spatial configurations; (e) demonstration of multi-viewing coupling; (f) surface reconstruction of the bulbus oculi of a normal (top) and myopic eye (bottom). Reproduced with permission from Springer Nature.

    图 4  三种不同AVS 器件结构图对比 (a) Gr/h-BN/MoTe2/MoS2结构[8]; (b) WSe2/BN结构[23]; (c) IGZO/WSe2 结构[1]

    Fig. 4.  Comparison of three different AVS device structures: (a) Gr/h-BN/MoTe2/MoS2 structure[8]; (b) WSe2/BN structure[23]; (c) IGZO/WSe2 structure[1].

    表 1  三种AVS关键参数对比表

    Table 1.  Comparison of key parameters of three AVS devices.

    器件结构 帧率 功耗/nW 响应时间/ms 光谱响应
    范围
    参考
    文献
    Gr/h-BN
    /MoTe2
    /MoS2
    1.5集中在635 nm[8]
    WSe2/BN10<8可见光
    全范围
    [23]
    IGZO/WSe2>3
    frames/s
    0.14<10450—880 nm[1]
    下载: 导出CSV
    Baidu
  • [1]

    Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46Google Scholar

    [2]

    Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84Google Scholar

    [3]

    Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275Google Scholar

    [4]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [5]

    沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 71 148505Google Scholar

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 148505Google Scholar

    [6]

    Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010Google Scholar

    [7]

    廖付友, 柴扬 2021 物理 50 378Google Scholar

    Liao F Y, Cai Y, 2021 PHYSICS 50 378Google Scholar

    [8]

    Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208Google Scholar

    [9]

    Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128Google Scholar

    [10]

    Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751

    [11]

    Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968Google Scholar

    [12]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [13]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101Google Scholar

    [14]

    李璐, 张养坤, 时东霞, 张广宇 2022 71 108102Google Scholar

    Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 108102Google Scholar

    [15]

    Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802Google Scholar

    [16]

    Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505Google Scholar

    [17]

    Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2025 2502072

    [18]

    Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503Google Scholar

    [19]

    Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446Google Scholar

    [20]

    Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404Google Scholar

    [21]

    Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043Google Scholar

    [22]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [23]

    Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173Google Scholar

    [24]

    Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27Google Scholar

    [25]

    Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650Google Scholar

    [26]

    Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261Google Scholar

    [27]

    Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257Google Scholar

  • [1] 赵世杰, 马浩南, 刘霞. 基于扫描热探针技术的二维材料物性调控研究进展.  , 2025, 74(3): 038101. doi: 10.7498/aps.74.20241590
    [2] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [3] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展.  , 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [4] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展.  , 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [6] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [7] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质.  , 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [8] 黄新玉, 韩旭, 陈辉, 武旭, 刘立巍, 季威, 王业亮, 黄元. 二维材料解理技术新进展及展望.  , 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [9] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [10] 蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青. 柔性神经形态晶体管及其仿生感知应用.  , 2022, 71(14): 147301. doi: 10.7498/aps.71.20220308
    [11] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [12] 何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国. 基于二维材料的自旋-轨道矩研究进展.  , 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [13] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [14] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [15] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [16] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [18] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  1190
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-30
  • 修回日期:  2025-06-28
  • 上网日期:  2025-07-14
  • 刊出日期:  2025-09-05

/

返回文章
返回
Baidu
map