搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中性束注入射频负氢离子源的物理研究

邢思雨 高飞 王友年

引用本文:
Citation:

中性束注入射频负氢离子源的物理研究

邢思雨, 高飞, 王友年

An RF negative hydrogen ion source for neutral beam injection

XING Siyu, GAO Fei, WANG Younian
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 中性束注入是托卡马克装置中加热等离子体的主流辅助手段. 射频负氢离子源作为中性束注入系统的关键前端部件, 其性能直接影响中性束的质量. 目前, 提升负氢离子源性能仍是亟待深入研究的课题. 为此, 本文针对双驱动负氢离子源, 建立了一个三维流体模型, 用于模拟和优化表面产生机制下的负离子密度分布. 首先, 对比分析了体产生与表面产生两种机制下的等离子体参数, 结果表明表面产生机制获得的负离子密度比体产生机制高出1个数量级. 然而, 受过滤磁场影响, 引出区附近的负离子密度分布呈现不对称性. 为改善该不对称性, 在表面产生机制的基础上, 提出了两种优化方案: 1)在低密度侧增加射频源功率; 2)在扩散区引入隔板结构. 模拟结果显示, 两种方案均显著改善了负离子密度分布的对称性. 最后还提出了在扩散区背板添加磁屏蔽的方式来进一步优化负氢离子密度数值, 可以将扩散区下游的负离子密度提高69%.
    In neutral beam injection (NBI), which is a primary auxiliary heating method for tokamak plasmas, the negative hydrogen ion source (NHIS) functions as a critical front-end component governing neutral beam quality. The performance of NHIS remains a key challenge. This work presents a three-dimensional (3D) fluid model, which is developed for a double-driver NHIS to simulate and optimize surface-generated negative hydrogen ion density. A comparison of plasma parameters between the NHIS with Cs and without Cs shows that surface generation yields negative ion density one order of magnitude higher than volume generation. However, the presence of the magnetic filter field induces asymmetry in negative ion density within the extraction region. To improve this asymmetry, two approaches are proposed: (1) increasing the power of one of the drivers and (2) adding a spacer plate to the expansion region. After increasing the power of Driver I from 50 to 56 kW, the H density asymmetry at the y = 25 cm intercept on the xy-plane (z = –22 cm) decreases from 0.04 to 0.01, and the value of H density increases. Following the addition of a spacer plate, the H density asymmetry further decreases to 0.004, but the value of H- density also shows a significant reduction. Finally, adding a magnetic shield to the back plate of the expansion region further optimizes H density from 1.48×1017 m–3 to 2.50×1017 m–3, yielding a 69% increase downstream. This is because increased plasma transport into the expansion region enhances the dissociation rate of H2 molecules, thereby yielding more H atoms. The attenuation of the magnetic filter field in the driver region after adding a magnetic shield also enhances the symmetry of the H density.
  • 图 1  双驱动负氢离子源的三维结构示意图

    Fig. 1.  Schematic diagram of the 3D geometric structure of a double-driver negative hydrogen ion source.

    图 2  无Cs源(第一列)与有Cs源(第二列)中xz平面(y = 25 cm)的等离子体参数分布. 压强为0.6 Pa, 每个源功率为50 kW

    Fig. 2.  Distribution of plasma parameters in the xz-plane (y = 25 cm) in a double-driver ion source without Cs and with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 3  无Cs源与有Cs源中xy平面(z = –22 cm)的等离子体参数分布. 压强为0.6 Pa, 每个源功率为50 kW

    Fig. 3.  Distribution of plasma parameters in the xy-plane (z = –22 cm) in a double-driver ion source without Cs and with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 4  有Cs源中增加源I功率和添加隔板后xz平面(y = 25 cm)的等离子体参数分布, 其中压强固定为0.6 Pa

    Fig. 4.  Distribution of plasma parameters in the xz-plane (y = 25 cm) after increasing the power of driver I and adding a spacer plate in ion source with Cs, where the pressure is fixed at 0.6 Pa.

    图 5  有Cs源中增加源I功率和添加隔板后xy平面(z = –22 cm)的等离子体参数分布, 其中压强固定为0.6 Pa

    Fig. 5.  Distribution of plasma parameters in the xy-plane (z = –22 cm) after increasing the power of driver I and adding a spacer plate in ion source with Cs, where the pressure is fixed at 0.6 Pa.

    图 6  截线y = 25 cm上的H密度分布

    Fig. 6.  H density at the intercept y = 25 cm.

    图 7  (a)无磁屏蔽与(b)添加磁屏蔽情况下xz平面(y = 25 cm)的过滤磁场分布; (c) 轴线上的磁场分布

    Fig. 7.  Magnetic filter field distribution in the xz-plane (y = 25 cm) (a) without and (b) with magnetic shield; (c) profile of the magnetic field distribution on the driver axis.

    图 8  有Cs源中添加磁屏蔽后xz平面(y = 25 cm)的等离子体参数分布. 压强为0.6 Pa, 每源功率为50 kW

    Fig. 8.  Distribution of plasma parameters in the xz-plane (y = 25 cm) without and with magnetic shield in ion source with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 9  有无磁屏蔽条件下等离子体参数沿轴向的分布

    Fig. 9.  Distribution of plasma parameters along the axial direction with and without magnetic shield.

    图 10  有Cs源中添加磁屏蔽后xy平面(z = –22 cm)的等离子体参数分布. 压强为0.6 Pa, 每源功率为50 kW

    Fig. 10.  Distribution of plasma parameters in the xy-plane (z = –22 cm) without and with magnetic shield in ion source with Cs. The pressure is 0.6 Pa and the power of every driver is 50 kW.

    图 11  有无磁屏蔽条件下截线y = 25 cm上的等离子体参数分布

    Fig. 11.  Distribution of plasma parameters at the intercept y = 25 cm with and without magnetic shield.

    表 1  模型中考虑的反应

    Table 1.  Reactions included in this model.

    反应描述参考文献
    1. $ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {{\text{H}}_2} $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+{\mathrm{H}}_{2} $弹性散射[25]
    2. $ e + H \to e + H $弹性散射[25]
    3. $ {\text{e}} + {{\text{H}}_2} \to 2{\text{e}} + {\text{H}} + {{\text{H}}^ + } $$ \mathrm{e}+{\mathrm{H}}_{2}\to 2\mathrm{e}+\mathrm{H}+{\mathrm{H}}^{+} $Dissociative ionization[26]
    4. $ {\text{e}} + {{\text{H}}_2} \to 2{\text{e}} + {\text{H}}_2^ + $Molecular ionization[26]
    5. $ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {\text{H}} + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+\mathrm{H}+\mathrm{H} $Dissociation[27]
    6. $ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {\text{H}} + {\text{H}}(n = 2) $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+\mathrm{H}+\mathrm{H}(\mathrm{n}=2) $Dissociation[28]
    7. $ {\text{e}} + {\text{H}} \to 2{\text{e}} + {{\text{H}}^ + } $$ \mathrm{e}+\mathrm{H}\to 2\mathrm{e}+{\mathrm{H}}^{+} $Ionization[26]
    8. $ {\text{e}} + {\text{H}} \to {\text{e}} + {\text{H}}(n = 2, 3) $$ \mathrm{e}+\mathrm{H}\to \mathrm{e}+\mathrm{H}(\mathrm{n}=\mathrm{2, 3}) $Excitation[26]
    9. $ {\text{e}} + {\text{H}}({\text{n}} = 2, 3) \to 2{\text{e}} + {{\text{H}}^ + } $$ \mathrm{e}+\mathrm{H}(\mathrm{n}=\mathrm{2, 3})\to 2\mathrm{e}+{\mathrm{H}}^{+} $Ionization[26]
    10.$ {\text{e}} + {\text{H}}_2^ + \to {\text{e}} + {{\text{H}}^ + } + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to \mathrm{e}+{\mathrm{H}}^{+}+\mathrm{H} $Dissociative excitation[26]
    11.$ {\text{e}} + {\text{H}}_2^ + \to {\text{e}} + {{\text{H}}^ + } + {\text{H}}(n = 2) $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to \mathrm{e}+{\mathrm{H}}^{+}+\mathrm{H}(\mathrm{n}=2) $Dissociative excitation[28]
    12.$ {\text{e}} + {\text{H}}_2^ + \to {\text{H}} + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to \mathrm{H}+\mathrm{H} $Dissociative recombination[29]
    13.$ {\text{e}} + {\text{H}}_3^ + \to {\text{e}} + 2{\text{H}} + {{\text{H}}^ + } $$ \mathrm{e}+{\mathrm{H}}_{3}^{+}\to \mathrm{e}+2\mathrm{H}+{\mathrm{H}}^{+} $Dissociative excitation[28]
    14.$ {\text{e}} + {\text{H}}_3^ + \to 3{\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{3}^{+}\to 3\mathrm{H} $Recombination[29]
    15.$ {\text{e}} + {\text{H}}_2^ + \to 2{\text{e}} + 2{{\text{H}}^ + } $$ \mathrm{e}+{\mathrm{H}}_{2}^{+}\to 2\mathrm{e}+{2\mathrm{H}}^{+} $Dissociative[26]
    16.$ {\text{e}} + {{\text{H}}_2} \to {\text{e}} + {{\text{H}}_2}(v = 1 - 14) $$ \mathrm{e}+{\mathrm{H}}_{2}\to \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3) $Radiative decay and excitation: EV[30]
    17.$ {\text{e}} + {{\text{H}}_2}(v = 1 - 14) \to {\text{e}} + 2{\text{H}} $$ \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3)\to \mathrm{e}+2\mathrm{H} $Dissociation[31]
    18.$ {\text{e}} + {{\text{H}}_2}(v = 1 - 14) \to {\text{H}} + {{\text{H}}^ - } $$ \mathrm{e}+{\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3)\to \mathrm{H}+{\mathrm{H}}^{-} $Dissociative electron attachment: DA[26]
    19.$ {\text{H}}_2^ + + {{\text{H}}_2} \to {\text{H}}_3^ + + {\text{H}} $$ {\mathrm{H}}_{2}^{+}+{\mathrm{H}}_{2}\to {\mathrm{H}}_{3}^{+}+\mathrm{H} $Ion formation[32]
    20.$ {\text{e}} + {{\text{H}}^ - } \to 2{\text{e}} + {\text{H}} $$ \mathrm{e}+{\mathrm{H}}^{-}\to 2\mathrm{e}+\mathrm{H} $Electron detachment: ED[28]
    21.$ {\text{H}}_2^ + + {{\text{H}}^ - } \to {\text{H}} + {{\text{H}}_2} $$ {\mathrm{H}}_{2}^{+}+{\mathrm{H}}^{-}\to \mathrm{H}+{\mathrm{H}}_{2} $Mutual neutralization: MN[33]
    22.$ {\text{H}}_2^ + + {{\text{H}}^ - } \to 3{\text{H}} $Mutual neutralization: MN[39]
    23.$ {\text{H}}_3^ + + {{\text{H}}^ - } \to 2{{\text{H}}_2} $$ {\mathrm{H}}_{3}^{+}+{\mathrm{H}}^{-}\to 2{\mathrm{H}}_{2} $Mutual neutralization: MN[33]
    24.$ {\text{H}}_3^ + + {{\text{H}}^ - } \to 4{\text{H}} $Mutual neutralization: MN[39]
    25.$ {\text{H}}_{}^ + + {{\text{H}}^ - } \to {\text{H + H}} $Mutual neutralization: MN[39]
    26.$ {\text{H}}_{}^ + + {{\text{H}}^ - } \to {\text{H + H}}(n = 2, {\text{ }}3) $Mutual neutralization: MN[33]
    27.$ {\text{H}} + {{\text{H}}^ - } \to {\text{e}} + {{\text{H}}_2} $$ \mathrm{H}+{\mathrm{H}}^{-}\to \mathrm{e}+{\mathrm{H}}_{2} $Associative detachment: AD[33]
    28.$ {\text{wall \& PG: H}}_3^ + \to {{\text{H}}_2} + {\text{H}} $$ {\mathrm{H}}_{3}^{+}+\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\to {\mathrm{H}}_{2}+\mathrm{H} $Ion wall recombination[34]
    29.$ {\text{wall \& PG: H}}_3^ + \to 3{\text{H}} $Ion wall recombination[34]
    30.$ {\text{wall \& PG: H}}_2^ + \to {{\text{H}}_2} $$ \to {\mathrm{H}}_{2} $Ion wall recombination[34]
    31.$ {\text{wall \& PG: H}}_2^ + \to 2{\text{H}} $Ion wall recombination[34]
    32.$ {\text{wall \& PG: }}{{\text{H}}^ + } \to {\text{H}} $Ion wall recombination[34]
    33.$ {\text{wall \& PG: H}} + H \to {{\text{H}}_2} $$ \mathrm{H}+\mathrm{H}+\mathrm{w}\mathrm{a}\mathrm{l}\mathrm{l}\to {\mathrm{H}}_{2} $H wall recombination[35,36]
    34.$ {\text{wall \& PG: H}}(n = 2, {\text{ }}3) \to {\text{H}} $H(n) wall recombination[35,37]
    35.$ {\text{wall \& PG: }}{{\text{H}}_2}(v = 1 - 14) \to {{\text{H}}_2} $$ {\mathrm{H}}_{2}(\mathrm{w}=\mathrm{1, 2}, 3)+ $Vibrational de-excitation: WD[35,38]
    36.$ {\text{PG: H}} \to {{\text{H}}^ - } $Surface generation[40]
    37.$ {\text{PG: }}{{\text{H}}^ + } \to {{\text{H}}^ - } $Surface generation[40]
    38.$ {\text{PG: H}}_2^ + \to 2{{\text{H}}^ - } $Surface generation[40]
    39.$ {\text{PG: H}}_3^ + \to {{\text{H}}_2} + {{\text{H}}^ - } $Surface generation[40]
    40.$ {\text{PG: H}}_3^ + \to 3{{\text{H}}^ - } $Surface generation[40]
    下载: 导出CSV
    Baidu
  • [1]

    张伟, 张新军, 刘鲁南, 朱光辉, 杨桦, 张华朋, 郑艺峰, 何开洋, 黄娟 2023 72 215201Google Scholar

    Zhang W, Zhang X J, Liu L N, Zhu G H, Yang Y, Zhang H P, Zheng Y F, He K Y, Huang J 2023 Acta Phys. Sin. 72 215201Google Scholar

    [2]

    孙延旭, 黄娟, 高伟, 常加峰, 张伟, 史唱, 李云鹤 2023 72 215203Google Scholar

    Sun Y X, Huang J, Gao Wei, Chang J F, Zhang W, Shi C, Li Y H 2023 Acta Phys. Sin. 72 215203Google Scholar

    [3]

    Kuriyama M, Akino N, Ebisawa N, Grisham L, Liquen H, Honda A, Itoh T, Kawai M, Kazawa M, Mogaki K, Ohara Y, Ohga T, Ohmori K, Okumura Y, Oohara H, Usui K, Watanabe K 1998 J. Nucl. Sci. Technol. 35 739Google Scholar

    [4]

    Wesson J 2004 Tokamaks (Oxford, UK: Oxford University Press

    [5]

    Takeiri Y, Morita S, Ikeda K, Ida K, Kubo S, Yokoyama M, Tsumori K, Oka Y, Osakabe M, Nagaoka K, Shimozuma T, Yoshinuma M, Narihara K, Funaba H, Goto M, Inagaki S, Tanaka K, Kaneko O, Komori A, Motojima O and the LHD Experimental Group 2007 Nucl. Fusion 47 1078Google Scholar

    [6]

    Franzen P, Falter H D, Fantz U, Kraus W, Berger M, Christ-Koch S, Fröschle M, Gutser R, Heinemann B, Hilbert S, Leyer S, Martens C, McNeely P, Riedl R, Speth E, Wünderlich D 2007 Nucl. Fusion 47 264Google Scholar

    [7]

    Song S S, Yang W, Liu W, Yin S, Liu Y X, Gao F, Wang Y N, Zhao Y T 2021 Plasma Phys. 28 073512Google Scholar

    [8]

    Pamela J 1995 Plasma Phys. Controlled Fusion 37 A325Google Scholar

    [9]

    Bacal M, Nishiura M, Sasao M, Hamabe M, Wada M, Yamaoka H 2002 Rev. Sci. Instrum. 73 903Google Scholar

    [10]

    Bacal M 2006 Nucl. Fusion 46 S250Google Scholar

    [11]

    Berger M, Fantz U, Christ-Koch S and NNBI Team 2009 Plasma Sources Sci. Technol. 18 025004Google Scholar

    [12]

    Heinemann B, Fantz U, Kraus W, Schiesko L, Wimmer C, Wünderlich D, Bonomo F, Fröschle M, Nocentini R, Riedl R 2017 New J. Phys. 19 015001Google Scholar

    [13]

    Wimmer C, Schiesko L, Fantz U 2016 Rev. Sci. Instrum. 87 02B310Google Scholar

    [14]

    Wimmer C 2014 Ph. D. Dissertation (Augsburg: Universitaet Augsburg) (Germany

    [15]

    He Z Q, Yang W, Gao F, Du C R, Wang Y N 2024 Phys. Plasmas 31 043501Google Scholar

    [16]

    Cristofaro S, Friedl R, Fantz U 2021 Plasma 4 94Google Scholar

    [17]

    Fubiani G, Boeuf J P 2013 Phys. Plasmas 20 113511Google Scholar

    [18]

    Taccogna F, Schneider R, Longo S, Capitelli M 2008 Phys. Plasmas 15 103502Google Scholar

    [19]

    杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 彭凯, 刘腊群 2013 62 025206Google Scholar

    Yang C, Liu D G, Wang H H, Yang Y P, Liao F Y, Peng K, Liu L Q 2013 Acta Phys. Sin. 62 025206Google Scholar

    [20]

    Yang C, Liu D G, Wang H H, Yang Y P, Liao F Y, Liu L Q, Peng K, Xia M Z 2012 Acta Phys. Sin. 61 235201 [杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 刘腊群, 彭凯, 夏蒙重 2012 61 235201]Google Scholar

    Yang C, Liu D G, Wang H H, Yang Y P, Liao F Y, Liu L Q, Peng K, Xia M Z 2012 Acta Phys. Sin. 61 235201Google Scholar

    [21]

    Fukumasa O, Nishida R 2006 Nucl. Fusion 46 S275Google Scholar

    [22]

    Gutser R, Wünderlich D, Fantz U and the NNBI-Team 2009 Plasma Phys. Controlled Fusion 51 045005Google Scholar

    [23]

    Xing S Y, Gao F, Zhang Y R, Wang Y J, Lei G J, Wang Y N 2023 Plasma Sci. Technol. 25 105601Google Scholar

    [24]

    Boeuf J P, Hagelaar G J M, Sarrailh P, Fubiani G, Kohen N 2011 Plasma Sources Sci. Technol. 20 015002Google Scholar

    [25]

    Petrov G M, Giuliani J L 2001 J. Appl. Phys. 90 619Google Scholar

    [26]

    Janev R K, Reiter D, Samm U 2003 Collision Processes in Low-Temperature Hydrogen Plasma (Forschungszentrum, Zentralbibliothek

    [27]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B, Itikawa Y 2008 J. Phys. Chem. Ref. Data 37 913Google Scholar

    [28]

    Janev R K, Langer W D, Evans K, Post D E 1989 Elementary Processes in Hydrogen–Helium Plasmas: Cross Sections and Reaction Rate Coefficients (Berlin: Springer

    [29]

    Hjartarson A T, Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 065008Google Scholar

    [30]

    Celiberto R, Janev R K, Laricchiuta A, Capitelli M, Wadehra J M, Atems D E 2001 At. Data Nucl. Data Tables 77 161Google Scholar

    [31]

    Celiberto R, Capitelli M, Laricchiuta A 2002 Phys. Scr. T 96 32

    [32]

    Bowers M T, Elleman D D, King J 1969 J. Chem. Phys. 50 4787Google Scholar

    [33]

    Matveyev A A, Silakov V P 1995 Plasma Sources Sci. Technol. 4 606Google Scholar

    [34]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

    [35]

    Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar

    [36]

    Gorse C, Capitelli M, Bacal M, Bretagne J, Lagana A 1987 Chem. Phys. 117 177Google Scholar

    [37]

    Averkin S N, Gatsonis N A, Olson L 2015 IEEE Trans. Plasma Sci. 43 1926Google Scholar

    [38]

    Hiskes J R, Karo A M 1989 Appl. Phys. Lett. 54 508Google Scholar

    [39]

    Eerden M J J, Van de Sanden M C M, Otorbaev D K, Schram D C 1995 Phys. Rev. A 51 3362Google Scholar

    [40]

    Seidl M, Cui H L, Isenberg J D, Kwon H J, Lee B S, Melnychuk S T 1996 J. Appl. Phys. 79 2896Google Scholar

    [41]

    Zhang Y R, Wang X, Yang W, Gao F and Wang Y N 2021 Plasma Sources Sci. Technol. 30 075028Google Scholar

    [42]

    Fubiani G, Boeuf J P 2015 Plasma Sources Sci. Technol. 24 055001Google Scholar

    [43]

    Franzen P, Wünderlich D, Fantz U and the NNBI Team 2014 Plasma Phys. Controlled Fusion 56 025007Google Scholar

  • [1] 陈越, 朱晓东. 电子回旋共振激发氘负离子数密度的光发射谱诊断.  , doi: 10.7498/aps.74.20241605
    [2] 袁泓, 尹相辉, 吕波, 金仡飞, BaeCheonho, 张洪明, 符佳, 刘海庆, 赵海林, 臧庆, 王福地, 向东. EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究.  , doi: 10.7498/aps.74.20241462
    [3] 汤诗奕, 马梓淇, 邹云霄, 安小凯, 杨东杰, 刘亮亮, 崔岁寒, 吴忠振. 大束流阳极层离子源的阴极刻蚀现象及消除措施.  , doi: 10.7498/aps.73.20240494
    [4] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化.  , doi: 10.7498/aps.73.20231491
    [5] 崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真.  , doi: 10.7498/aps.72.20222394
    [6] 张伟, 张新军, 刘鲁南, 朱光辉, 杨桦, 张华朋, 郑艺峰, 何开洋, 黄娟. EAST上离子回旋波与中性束注入协同加热产生的高能粒子分布及输运研究.  , doi: 10.7498/aps.72.20230482
    [7] 孙延旭, 黄娟, 高伟, 常加峰, 张伟, 史唱, 李云鹤. EAST上中性束注入和离子回旋共振加热下快离子分布函数层析反演.  , doi: 10.7498/aps.72.20230846
    [8] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型.  , doi: 10.7498/aps.71.20212250
    [9] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验.  , doi: 10.7498/aps.65.045201
    [10] 杨超, 印茂伟, 尚丽萍, 王卫, 刘毅, 夏连胜, 邓建军. 多峰场负氢离子源磁体布局对等离子体特性影响的数值模拟研究.  , doi: 10.7498/aps.64.085203
    [11] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 彭凯, 刘腊群. 表面产生负氢离子引出MCC算法设计.  , doi: 10.7498/aps.62.025206
    [12] 杨超, 廖方燕, 谢鸿全. Japan Atomic Energy Agency 10 Ampere多峰负氢离子源全三维数值诊断.  , doi: 10.7498/aps.62.215202
    [13] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. J-PARC多峰离子源体积产生效率三维数值模拟研究.  , doi: 10.7498/aps.61.185204
    [14] 杨超, 刘大刚, 陈颖, 夏蒙重, 王学琼, 王小敏. 多峰离子源的三维数值模拟优化与设计.  , doi: 10.7498/aps.61.135203
    [15] 杨超, 刘大刚, 王学琼, 王小敏, 夏蒙重, 彭凯. 氢原子传输及负氢离子产生全三维数值模拟研究.  , doi: 10.7498/aps.61.105204
    [16] 杨超, 刘大刚, 刘腊群, 夏蒙重, 王辉辉, 王小敏. 负氢离子源中电子能量沉积三维数值模拟研究.  , doi: 10.7498/aps.61.155205
    [17] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究.  , doi: 10.7498/aps.61.045204
    [18] 吴师岗, 邵建达, 范正修. 负离子元素杂质破坏模型.  , doi: 10.7498/aps.55.1987
    [19] 盛谏. 高频离子源引出结构最佳尺寸的光学计算.  , doi: 10.7498/aps.19.782
    [20] 古月. 高频离子源的一些特性.  , doi: 10.7498/aps.16.107
计量
  • 文章访问数:  408
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-23
  • 修回日期:  2025-08-20
  • 上网日期:  2025-09-02

/

返回文章
返回
Baidu
map