搜索

x
中国物理学会期刊

基于等离子体电化学法的碳量子点制备、改性及其光学性能调控研究进展

Research progress of preparation, modification, and optical performance regulation of carbon quantum dots based on plasma electrochemistry method

CSTR: 32037.14.aps.74.20251183
PDF
HTML
导出引用
  • 碳量子点作为一种新兴的零维碳基纳米材料, 因其优异的光电特性、良好的生物相容性和易于功能化等特性, 在生物医学、传感检测和LED照明等领域展现出巨大的应用潜力. 传统的水热、微波等合成方法通常面临反应条件苛刻、耗时长、能耗高且产物光学性能调控困难等问题. 等离子体电化学法, 通过等离子体与液体相互作用产生的高密度电子、离子、光子和反应活性自由基等活性物种与碳源分子进行反应, 可高效驱动碳量子点快速合成及改性. 等离子体电化学法具备温和的多反应参数可调的特性, 为碳量子点的合成和改性提供了全新的研究思路. 本文首先阐述了等离子体电化学法合成碳量子点的生长机理, 介绍该方法可通过调控多维参数实现对产物性能调控的独特优势. 随后介绍了基于等离子体的反应参数对碳量子点荧光量子产率和波长调控的研究进展. 最后, 展示了基于等离子体制备和改性的碳量子点在生物医学、光电器件, 以及pH传感等领域的应用进展及展望.

     

    Carbon quantum dots, as an emerging zero-dimensional carbon-based nanomaterial, have shown great potential applications in fields such as biomedicine, sensing detection, and LED lighting due to their excellent photoelectric properties, good biocompatibility, and ease of functionalization. Traditional synthesis methods like hydrothermal and microwave approaches often face challenges such as harsh reaction conditions, long reaction times, high energy consumption, and difficulties in controlling the optical properties of the products. The plasma electrochemistry method, which utilizes reactions between carbon source molecules and high-density electrons, ions, photons, and reactive radicals generated during the interaction of plasma with liquid, can efficiently drive the rapid synthesis and modification of carbon quantum dots. This method possesses the advantage of tunable multiple reaction parameters under mild conditions, providing a novel research method for synthesizing and modifying carbon quantum dots. This article first elucidates the growth mechanism of carbon quantum dots synthesized via plasma electrochemical methods and highlights the unique advantages of this approach in controlling product properties by regulating multidimensional parameters. Then, it reviews research progress of the regulation of the fluorescence quantum yield and wavelength of carbon quantum dots based on the adjustment of plasma reaction parameters. Finally, this article presents the application progress and prospects of plasma-prepared and plasma-modified carbon quantum dots in biomedicine, optoelectronic devices, pH sensing, and other fields.

     

    目录

    /

    返回文章
    返回
    Baidu
    map