搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFQS-T准环对称仿星器高频磁探针阵列诊断的研制及初步应用

兰恒 李嘉栋 曹宇豪 沈军峰 李嘉诚 许宇鸿 孙腾飞 何梦圆 冯宇轩 吴丹妮 程钧 刘海峰 SHIMIZUAkihiro 王先驱 宣伟民 张美勇 邹千 罗珺 杨权 张欣 刘海 黄捷 胡军 邵俊仁 李伟 栗钰彩 周红 王捷 苏祥 唐昌建

引用本文:
Citation:

CFQS-T准环对称仿星器高频磁探针阵列诊断的研制及初步应用

兰恒, 李嘉栋, 曹宇豪, 沈军峰, 李嘉诚, 许宇鸿, 孙腾飞, 何梦圆, 冯宇轩, 吴丹妮, 程钧, 刘海峰, SHIMIZUAkihiro, 王先驱, 宣伟民, 张美勇, 邹千, 罗珺, 杨权, 张欣, 刘海, 黄捷, 胡军, 邵俊仁, 李伟, 栗钰彩, 周红, 王捷, 苏祥, 唐昌建

Development and preliminary application of high-frequency magnetic probe array on quasi-axisymmetric stellarator CFQS-T

LAN Heng, LI Jiadong, CAO Yuhao, SHEN Junfeng, LI Jiacheng, XU Yuhong, SUN Tengfei, HE Mengyuan, FENG Yuxuan, WU Danni, CHENG Jun, LIU Haifeng, SHIMIZU Akihiro, WANG Xianqu, XUAN Weimin, ZHANG Meiyong, ZOU Qian, LUO Jun, YANG Quan, ZHANG Xin, LIU Hai, HUANG Jie, HU Jun, SHAO Junren, LI Wei, LI Yucai, ZHOU Hong, WANG Jie, SU Xiang, TANG Changjian
cstr: 32037.14.aps.74.20250957
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 对于磁约束聚变实验装置, 磁探针诊断是一种基础又非常重要的研究等离子体磁涨落的诊断. 中国首台准环对称仿星器(Chinese First Quasi-axisymmetric Stellarator, CFQS)实验运行的第1阶段(也称为CFQS-T准环对称仿星器)的物理实验研究需要磁探针诊断提供相应的等离子体磁涨落测量. 本文报道了在CFQS-T准环对称仿星器上新研制的高频磁探针阵列诊断, 其由8个相同的三维高频磁探针组成, 每个高频磁探针可以同时测量极向、径向及环向3个方向的磁涨落信号; 优化的空间布置使得高频磁探针阵列可以用于研究磁涨落的极向和环向传播特征, 其最高环向模数分辨相比于低频磁探针阵列的n = ±6提高至n = ±16. 本文将简要介绍高频磁探针阵列诊断的机械系统、信号传输线、采集与控制系统等主要子系统及在研制各系统过程中克服的挑战, 以及对高频磁探针的有效面积标定和原位频率响应标定的研究结果, CFQS-T高频磁探针每个测量方向的共振频率均大于400 kHz, 满足测量50—300 kHz高频磁涨落的设计需求. 初步的应用研究显示高频磁探针阵列诊断可用于低频和高频磁涨落的时频谱、极向和环向传播分析, 值得注意的是, 本文首次报道了对CFQS-T上高频磁涨落的测量分析结果. 高频磁探针阵列诊断的成功研制有助于CFQS-T深入开展等离子体电磁涨落的相关研究.
    For magnetic confined fusion devices, magnetic probe diagnostic is a basic but very important diagnostic tool for studying plasma magnetic fluctuations. The first experimental phase of the Chinese First Quasi-axisymmetric Stellarator (CFQS), which is also called CFQS-T, needs magnetic probe diagnostics to provide plasma magnetic fluctuation measurements, especially the high-frequency ($50 \leqslant f \leqslant 300$ kHz) magnetic fluctuation measurements. In this paper, a newly developed high-frequency magnetic probe array (HFMPA) diagnostic on the CFQS-T is reported. This array consists of 8 identical three-dimensional high-frequency magnetic probes, each of which can simultaneously measure magnetic fluctuations in the poloidal, radial and toroidal directions. The HFMPA magnetic probes are carefully mounted on the inner vacuum vessel wall of the CFQS-T, and their positions are precisely measured by the laser tracker system. The HFMPA can be used to study the poloidal and toroidal propagation characteristics of magnetic fluctuations due to the optimized spatial arrangement, and its maximum toroidal mode number resolution is improved to n = ±16 compared with n = ±6 of the low-frequency magnetic probe array (LFMPA, used for the $f \leqslant 50$ kHz magnetic fluctuation measurements). The main subsystems of the HFMPA diagnostic, such as the mechanical system, signal transmission lines, acquisition and control systems, and the challenges overcome in the development of each subsystem, will be briefly introduced in this paper. The effective areas of the HFMPA magnetic probes are calibrated by the relative calibration method, which shows that their areas are all around 0.02 m2. The in-situ frequency response of the HFMPA magnetic probes is calibrated with an LCR digital bridge with a maximum working frequency of 10 MHz. The resonance frequency of the HFMPA magnetic probe in each measurement direction is greater than 400 kHz, which meets the design requirements for measuring 50–300 kHz high-frequency magnetic fluctuations in CFQS-T. Preliminary applications of the HFMPA diagnostic in studying the low-frequency (1.5–16.0 kHz) magnetic fluctuations and high-frequency (65–105 kHz) magnetic fluctuations in CFQS-T are briefly introduced, which shows that the HFMPA diagnostic works well for providing the spectrogram, poloidal, and toroidal propagation information of low-frequency and high-frequency magnetic fluctuations. It is worth noting that the measurement and analysis results of high-frequency (65–105 kHz) magnetic fluctuations in CFQS-T are reported for the first time in this paper. The successful development of the HFMPA diagnostic will help to carry out in-depth research on plasma magnetic fluctuations in CFQS-T stellarator.
      通信作者: 兰恒, henglan@swjtu.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: 2682024CX045, 2682024CX051, 2682024ZTPY034)、国家自然科学基金(批准号: 12105187, U22A20262)和国家磁约束核聚变能发展研究专项(批准号: 2022YFE03070000, 2022YFE03070001)资助的课题.
      Corresponding author: LAN Heng, henglan@swjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2682024CX045, 2682024CX051, 2682024ZTPY034), the National Natural Science Foundation of China (Grant Nos. 12105187, U22A20262), and the National MCF Energy R&D Program of China (Grant Nos. 2022YFE03070000, 2022YFE03070001).
    [1]

    Gates D A, Anderson D, Anderson S, Zarnstorff M, Spong D A, Weitzner H, Neilson G H, Ruzic D, Andruczyk D, Harris J H, Mynick H, Hegna C C, Schmitz O, Talmadge J N, Curreli D, Maurer D, Boozer A H, Knowlton S, Allain J P, Ennis D, Wurden G, Reiman A, Lore J D, Landreman M, Freidberg J P, Hudson S R, Porkolab M, Demers D, Terry J, Edlund E, Lazerson S A, Pablant N, Fonck R, Volpe F, Canik J, Granetz R, Ware A, Hanson J D, Kumar S, Deng C, Likin K, Cerfon A, Ram A, Hassam A, Prager S, Paz-Soldan C, Pueschel M J, Joseph I, Glasser A H 2018 J. Fusion Energ. 37 51Google Scholar

    [2]

    Yoshida M, McDermott R M, Angioni C, Camenen Y, Citrin J, Jakubowski M, Hughes J W, Idomura Y, Mantica P, Mariani A, Mordijck S, Paul E J, Tala T, Verdoolaege G, Zocco A, Casson F J, Dif-Pradalier G, Duval B, Grierson B A, Kaye S M, Manas P, Maslov M, Odstrcil T, Rice J E, Schmitz L, Sciortino F, Solano E R, Staebler G, Valovič M, Wolfrum E, Snipes J A 2025 Nucl. Fusion 65 033001Google Scholar

    [3]

    Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A, Todo Y 2011 Plasma Phys. Contr. Fusion 53 024008Google Scholar

    [4]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [5]

    Rahbarnia K, Thomsen H, Schilling J, vaz Mendes S, Endler M, Kleiber R, Könies A, Borchardt M, Slaby C, Bluhm T, Zilker M, Carvalho B B 2021 Plasma Phys. Contr. Fusion 63 015005Google Scholar

    [6]

    Salewski M, Spong D A, Aleynikov P, Bilato R, Breizman B N, Briguglio S, Cai H, Chen L, Chen W, Duarte V N, Dumont R J, Falessi M V, Fitzgerald M, Fredrickson E D, García-Muñoz M, Gorelenkov N N, Hayward-Schneider T, Heidbrink W W, Hole M J, Kazakov Y O, Kiptily V G, Könies A, Kurki-Suonio T, Lauber P, Lazerson S A, Lin Z, Mishchenko A, Moseev D, Muscatello C M, Nocente M, Podestà M, Polevoi A, Schneider M, Sharapov S E, Snicker A, Todo Y, Qiu Z, Vlad G, Wang X, Zarzoso D, Van Zeeland M A, Zonca F, Pinches S D 2025 Nucl. Fusion 65 043002Google Scholar

    [7]

    Xanthopoulos P, Mynick H E, Helander P, Turkin Y, Plunk G G, Jenko F, Gorler T, Told D, Bird T, Proll J H 2014 Phys. Rev. Lett. 113 155001Google Scholar

    [8]

    Zhong W L, Zhao K J, Zou X L, Dong J Q 2020 Rev. Mod. Plasma Phys. 4 11Google Scholar

    [9]

    Diallo A, Laggner F M 2021 Plasma Phys. Contr. Fusion 63 013001Google Scholar

    [10]

    Fujisawa A 2021 Proc. Jpn. Acad Ser. B Phys. Biol. Sci. 97 103Google Scholar

    [11]

    Nespoli F, Masuzaki S, Tanaka K, Ashikawa N, Shoji M, Gilson E P, Lunsford R, Oishi T, Ida K, Yoshinuma M, Takemura Y, Kinoshita T, Motojima G, Kenmochi N, Kawamura G, Suzuki C, Nagy A, Bortolon A, Pablant N A, Mollen A, Tamura N, Gates D A, Morisaki T 2022 Nat. Phys. 18 350Google Scholar

    [12]

    Sánchez E, Bañón Navarro A, Wilms F, Borchardt M, Kleiber R, Jenko F 2023 Nucl. Fusion 63 046013Google Scholar

    [13]

    Liu Y Q, Tan Y, Pan O, Ke R, Wang W H, Gao Z 2014 Rev. Sci. Instrum. 85 11E802Google Scholar

    [14]

    Cheng Z B, Tan Y, Gao Z, Wang S Z, Wang B B, Liu W B 2021 Rev. Sci. Instrum. 92 053518Google Scholar

    [15]

    Guo D J, Hu Q M, Li D, Shen C S, Wang N C, Huang Z, Huang M X, Ding Y H, Xu G, Yu Q Q, Tang Y J, Zhuang G 2017 Rev. Sci. Instrum. 88 123502Google Scholar

    [16]

    Han D L, Shen C S, Wang N C, Li D, Mao F Y, Ren Z K, Ding Y H, the J-TEXT Team 2021 Plasma Sci. Tech. 23 055104Google Scholar

    [17]

    Tu C, Liu A D, Li Z C, Tan M S, Luo B, You W, Li C G, Bai W, Fu C S, Huang F C, Xiao B J, Shen B, Shi T H, Chen D L, Mao W Z, Li H, Xie J L, Lan T, Ding W X, Xiao C J, Liu W D 2017 Rev. Sci. Instrum. 88 093513Google Scholar

    [18]

    Liang S Y, Ji X Q, Sun T F, Xu Y, Lu J, Yuan B S, Ren L L, Yang Q W 2017 AIP Adv. 7 125004Google Scholar

    [19]

    Chen D L, Shen B, Shi T H, Guo B H, Li T Y, Chen L X, Xue M M, Chu N 2023 Plasma Sci. Tech. 25 125102Google Scholar

    [20]

    Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Hu G H, Liu L N, Zhang W, Chen M, Zheng Y Y, Yuan Z, Wang Y, Xu Z H, Xu L Q, Zi P F, Chen L, Liu S C, Wu D G, Ding G F, Meng L Y, Wang Z C, Zang Q, Wu M Q, Zhu X, Hao B L, Lin X D, Gao X, Wang L, Xu G S 2023 Plasma Sci. Tech. 25 075105Google Scholar

    [21]

    Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Liu L N, Chen M, Chen L X, Chen D L, Shen B, Wang Y, Xu Z H, Lu Z K, Shao L M, Zheng Y Y, Yuan Z, Xu L Q, Hu G H, Chen L, Liu S C, Zi P F, Wang P, Wu D G, Ding G F, Meng L Y, Shen J F, Yang S, Shao J R, Zang Q, Wang L, Xu G S 2024 Fusion Eng. Des. 207 114636Google Scholar

    [22]

    Ouyang T B, Qian Y Z, Liu S Q, Yang X S, Chen X C 2022 AIP Adv. 12 015314Google Scholar

    [23]

    Strait E J 2006 Rev. Sci. Instrum. 77 023502Google Scholar

    [24]

    Heeter R F, Fasoli A F, Ali-Arshad S, Moret J M 2000 Rev. Sci. Instrum. 71 4092Google Scholar

    [25]

    Artaserse G, Baruzzo M, Henriques R B, Gerasimov S, Lam N, Tsalas M 2019 Fusion Eng. Des. 146 2781Google Scholar

    [26]

    Hole M J, Appel L C, Martin R 2009 Rev. Sci. Instrum. 80 123507Google Scholar

    [27]

    Moreau P, Le-Luyer A, Spuig P, Malard P, Saint-Laurent F, Artaud J F, Morales J, Faugeras B, Heumann H, Cantone B, Moreau M, Brun C, Nouailletas R, Nardon E, Santraine B, Berne A, Kumari P, Belsare S, Team W 2018 Rev. Sci. Instrum. 89 10J109Google Scholar

    [28]

    Takechi M, Matsunaga G, Sakurai S, Sasajima T, Yagyu J, Hoshi R, Kawamata Y, Kurihara K, Nishikawa T, Ryo T, Kagamihara S, Nakamura K 2015 Fusion Eng. Des. 96-97 985

    [29]

    Haskey S R, Blackwell B D, Seiwald B, Hole M J, Pretty D G, Howard J, Wach J 2013 Rev. Sci. Instrum. 84 093501Google Scholar

    [30]

    Sakakibara S, Yamada H 2010 Fusion Sci. Tech. 58 471Google Scholar

    [31]

    Endler M, Brucker B, Bykov V, Cardella A, Carls A, Dobmeier F, Dudek A, Fellinger J, Geiger J, Grosser K, Grulke O, Hartmann D, Hathiramani D, Höchel K, Köppen M, Laube R, Neuner U, Peng X, Rahbarnia K, Rummel K, Sieber T, Thiel S, Vorköper A, Werner A, Windisch T, Ye M Y 2015 Fusion Eng. Des. 100 468Google Scholar

    [32]

    Ascasibar E, Lapayese F, Soleto A, Jimenez-Denche A, Cappa A, Pons-Villalonga P, Portas A B, Martin G, Barcala J M, Garcia-Gomez R, Chamorro M, Cebrian L, Anton R, Bueno L, Reynoso C, Guisse V, Lopez-Fraguas A 2022 Rev. Sci. Instrum. 93 093508Google Scholar

    [33]

    Liu H F, Shimizu A, Xu Y H, Okamura S, Kinoshita S, Isobe M, Li Y B, Xiong G, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Yin D P, Wang Y, Murase T, Nakagawa S, Tang C J 2021 Nucl. Fusion 61 016014Google Scholar

    [34]

    Shimizu A, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Yoshimura Y, Suzuki C, Osakabe M, Murase T, Nakagawa S, Tanoue H, Xu Y, Liu H F, Liu H, Huang J, Wang X, Cheng J, Xiong G, Tang C, Yin D, Wan Y 2022 Nucl. Fusion 62 016010Google Scholar

    [35]

    Wang X Q, Xu Y, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X, Liu H, Cheng J, Tang C J 2021 Nucl. Fusion 61 036021Google Scholar

    [36]

    黄捷, 李沫杉, 覃程, 王先驱 2022 71 185202Google Scholar

    Huang J, Li M S, Qin C, Wang X Q 2022 Acta Phys. Sin. 71 185202Google Scholar

    [37]

    Liu H F, Zhang J, Xu Y H, Shimizu A, Cooper W A, Okamura S, Isobe M, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Tang C J 2023 Nucl. Fusion 63 026018Google Scholar

    [38]

    苏祥, 王先驱, 符添, 许宇鸿 2023 72 215205Google Scholar

    Su X, Wang X Q, Fu T, Xu Y H 2023 Acta Phys. Sin. 72 215205Google Scholar

    [39]

    李丹, 刘海峰 2025 74 055203Google Scholar

    Li D, Liu H F 2025 Acta Phys. Sin. 74 055203Google Scholar

    [40]

    Cheng J, et al. Construction progress of the Chinese First Quasi-axisymmetric Stellarator (CFQS) and preliminary experimental results on CFQS-Test device Plasma Phys. Control. Fusion (PPCF-105174

    [41]

    Lan H, et al. Development of a low-frequency magnetic probe array for the quasi-axisymmetric stellarator CFQS-T Fusion Engineering and Design (FUSENGDES-D-25-00438

    [42]

    黄晓莉 2009 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Huang X L 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [43]

    许亚东2019 博士学位论文(太原: 中北大学)

    Xu Y D 2019 Ph. D. Dissertation (Taiyuan: North University of China

    [44]

    胡庆, 刘文晶, 赖小龙, 张德民 2021 电信传输原理、系统及工程(西安: 西安电子科技大学出版社) 第26页

    Hu Q, Liu W J, Lai X L, Zhang D M 2021 Telecommunication Transmission Principles, Systems and Engineering (Xi'an: Xidian University Press) p26

    [45]

    陈力行, 陈大龙, 沈飊, 钱金平, 陈明 2024 核聚变与等离子体物理 44 105

    Chen L X, Chen D L, Shen B, Qian J P, Chen M 2024 Nucl. Fusion Plasma Phys. 44 105

    [46]

    Zhang J Z, Ji X Q, Sun T F, Liang S Y, Wang A, Wang J, Li J X, Liu J, Yang Q W 2021 ucl. Fusion Plasma Phys. 41 585 [张均钊, 季小全, 孙腾飞, 梁绍勇, 王傲, 王金, 李佳鲜, 刘健, 杨青巍 2021 核聚变与等离子体物理 41 585]

    Zhang J Z, Ji X Q, Sun T F, Liang S Y, Wang A, Wang J, Li J X, Liu J, Yang Q W 2021 ucl. Fusion Plasma Phys. 41 585

    [47]

    Shen B 2016 Fusion Eng. Des. 112 969Google Scholar

  • 图 1  CFQS-T准环对称仿星器高频磁探针阵列(HFMPA)诊断系统的组成示意图

    Fig. 1.  Diagram of the high-frequency magnetic probe array (HFMPA) diagnostic on the quasi-axisymmetric stellarator CFQS-T.

    图 2  CFQS-T准环对称仿星器高频磁探针的(a) 实物照片和(b) 模型及三维尺寸, 图中虚线箭头表示线圈测量磁场的方向

    Fig. 2.  (a) Photo and (b) model of a high-frequency magnetic probe used in CFQS-T, the dashed arrows are used to indicate the measurement direction of the coils.

    图 3  CFQS-T准环对称仿星器上的高频磁探针阵列的空间位置信息

    Fig. 3.  Positions of the high-frequency magnetic probes on CFQS-T.

    图 4  (a) CFQS-T准环对称仿星器上的高频磁探针及其机械保护部件的模型; (b) CFQS-T准环对称仿星器上的高频磁探针的实物照片; (c) 包含低频磁探针阵列(M1—M13)和高频磁探针阵列(HM1—HM8)的模型

    Fig. 4.  (a) Models of the high-frequency magnetic probes and their metal protective cases; (b) photo of the high-frequency magnetic probe array on CFQS-T; (c) model of the low-frequency (M1–M13) and high-frequency (HM1–HM8) magnetic probe arrays on CFQS-T.

    图 5  CFQS-T高频磁探针原位频率响应标定的电路示意图

    Fig. 5.  Circuit diagram of the in-situ frequency response calibration of the high-frequency magnetic probe on CFQS-T

    图 6  CFQS-T仿星器上三维高频磁探针的原位频率响应标定结果 (a), (b) 高频磁探针总的线路输出阻抗的幅度和相位频率响应; (c), (d) 高频磁探针总的线路传递函数的幅度和相位频率响应

    Fig. 6.  Results of in-situ frequency response calibration of the HFMPA 3D magnetic probe on CFQS-T: (a), (b) Frequency responses of amplitude and phase of the total output impedance respectively; (c), (d) frequency responses of the amplitude and phase of the transfer function, respectively.

    图 7  CFQS-T一炮氦等离子体放电(#95581)随时间演化信息 (a) 模块化线圈的电流(黑线)和根据定标公式计算的中心平衡磁场强度(红线); (b) 加热入射功率; (c) 等离子体芯部辐射功率(黑线)与边界辐射功率(红线); (d) 可见光谱强度; (e) 弦平均电子密度; (f) 微波干涉诊断测得的电子密度的时频谱; (g) 低频磁探针(选用M7, 见图4)测得的三维磁扰动; (h) 高频磁探针(选用HM4, 见图4)测得的三维磁扰动

    Fig. 7.  Time history of a helium discharge #95581 on CFQS-T: (a) Electric current through a modular coil (black color), corresponding equilibrium magnetic field in the plasma center calculated with a scaling equation (red color); (b) injecting power of the plasma heating system; (c) core plasma radiation power (black color) and edge plasma radiation power (red color); (d) intensity of the visible light measured by a spectrometer; (e) line-averaged electron density measured by a microwave interferometer; (f) spectrogram of the plasma electron density measured by the microwave interferometer; (g) three-dimensional magnetic fluctuations measured by a low-frequency magnetic probe (M7, see Fig. 4); (h) three-dimensional magnetic fluctuations measured by a high-frequency magnetic probe (HM4, see Fig.4).

    图 8  CFQS-T仿星器一炮放电(#95581)的时间演化信息 (a) 一个低频磁探针(M7, 见图4)测得的三维磁涨落信号及其对应的极向、径向及环向的磁涨落时频谱; (b) 一个高频磁探针(HM4, 见图4)测得的三维磁涨落信号及其对应的极向、径向及环向的磁涨落时频谱

    Fig. 8.  Time evolutions of three-dimensional magnetic signals and their spectrograms in the discharge #95581 on CFQS-T: (a) A low-frequency magnetic probe (M7, see Fig. 4); (b) a high-frequency magnetic probe (HM4, see Fig. 4).

    图 9  CFQS-T仿星器一炮放电中(#95581)的磁信号随时间演化信息 (a) 不同极向位置的低频磁探针测得的极向磁涨落信号经过8—12 kHz带通滤波后的演化信息; (b) 高频磁探针(HM2, HM3和HM4)测得的极向磁涨落信号经过8—12 kHz带通滤波后的演化信息; (c) 高频磁探针(HM6和HM7)测得的径向磁涨落信号经过8—12 kHz带通滤波后的演化信息; M1, HM2等标签表示不同的磁探针, 在图4中标出了这些磁探针的位置, 红色箭头表示8—12 kHz的磁涨落沿极向的传播方向

    Fig. 9.  Time evolution of the magnetic signals in the discharge #95581 on CFQS-T: (a) Poloidal magnetic signals of the LFMPA magnetic probes; (b) poloidal magnetic signals of the HFMPA magnetic probes (HM2, HM3, and HM4); (c) radial magnetic signals of the HFMPA magnetic probes (HM6 and HM7), in different poloidal positions and filtered in the frequency band of 8–12 kHz; the labels M1, HM2, etc. represent different magnetic probes as shown in Fig. 4, the red arrows indicate the poloidal propagating direction of the magnetic fluctuations in the frequency range of 8–12 kHz.

    图 10  CFQS-T仿星器一炮放电中(#95581)的磁信号随时间演化信息 不同环向位置的(a)低频磁探针(M7和M13)测得的极向磁涨落信号经过8—12 kHz带通滤波后的演化信息; (b) 高频磁探针(HM2和HM5)测得的极向磁涨落信号经过8—12 kHz带通滤波后的演化信息; (c) 高频磁探针(HM6和HM8)测得的径向磁涨落信号经过8—12 kHz带通滤波后的演化信息; 图中标签M7, HM2等表示不同的磁探针, 在图4中已经标记出来, 红色箭头显示了8—12 kHz的磁涨落沿环向的传播方向

    Fig. 10.  Time evolution of the magnetic signal in the discharge #95581 on CFQS-T: (a) Poloidal magnetic signals of two LFMPA magnetic probes (M7 and M13); (b) poloidal magnetic signals of two HFMPA magnetic probes (HM2 and HM5); (c) radial magnetic signals of two HFMPA magnetic probes (HM6 and HM8), in different toroidal positions and filtered in the frequency band of 8–12 kHz; the labels M7 and HM2, etc. represent different magnetic probes as shown in Fig. 4, the red arrows indicate the toroidal propagating direction of the magnetic fluctuations in the frequency range of 8–12 kHz.

    图 11  CFQS-T一炮氢等离子体放电(#94918) 随时间演化信息 (a) 模块化线圈的电流(黑线)以及根据定标公式计算的中心平衡磁场强度(红线所示); (b) 加热入射功率; (c) 等离子体芯部辐射功率(黑线所示)与边界辐射功率(红线所示); (d) 可见光谱强度; (e) 弦平均电子密度; (f) 微波干涉诊断测得的电子密度的时频谱; (g) 低频磁探针(选用M7, 见图4)测得的极向磁扰动信号及其(h) 时频谱; (i) 高频磁探针(选用HM4, 见图4)测得的极向磁扰动信号及其(j) 时频谱; (k)是图 (j)在5.2—5.8 s放大图

    Fig. 11.  Time history of the hydrogen discharge #94918 on CFQS-T: (a) Electric current through a modular coil (black color) and corresponding equilibrium magnetic field in the plasma center calculated with a scaling equation (red color); (b) injecting power of the plasma heating system; (c) core plasma radiation power (black color) and edge plasma radiation power (red color); (d) intensity of the visible light measured by a spectrometer; (e) line-averaged electron density measured by a microwave interferometer; (f) spectrogram of the plasma electron density measured by the microwave interferometer; (g) poloidal magnetic signal measured by a low-frequency magnetic probe (M7, see Fig. 4) and its (h) spectrogram; (i) poloidal magnetic signals measured by a high-frequency magnetic probe (HM4, see Fig. 4) and its (j) spectrogram; (k) is the zoomed-in plot of Fig. (j).

    图 12  CFQS-T仿星器一炮放电中(#94918)磁信号随时间演化信息 (a) 不同极向位置的高频磁探针(HM2, HM3及HM4)测得的极向磁涨落信号经过70—90 kHz带通滤波后的演化信息; (b) 不同极向位置的高频磁探针(HM6和HM7)测得的径向磁涨落信号经过70—90 kHz带通滤波后的演化信息; (c) 不同环向位置的高频磁探针(HM2和HM5)测得的极向磁涨落信号经过70—90 kHz带通滤波后的演化信息; (d) 不同环向位置的高频磁探针(HM6和HM8)测得的径向磁涨落信号经过70—90 kHz带通滤波后的演化信息; 标签HM2, HM5 和 MH8 等表示不同位置的高频磁探针, 见图4标记; (a), (b)中箭头显示了70—90 kHz的磁涨落沿极向的传播方向, (c), (d)中箭头显示了70—90 kHz的磁涨落沿环向的传播方向

    Fig. 12.  Time evolution of the magnetic signals in the discharge #94918 on CFQS-T: (a) Poloidal magnetic signals of three poloidally separated HFMPA magnetic probes (HM2, HM3, and HM4), filtered in the frequency band of 70–90 kHz; (b) radial magnetic signals of two poloidally separated HFMPA magnetic probes (HM6 and HM7), filtered in the frequency band of 70–90 kHz; (c) poloidal magnetic signals of two toroidally separated HFMPA magnetic probes (HM2 and HM5), filtered in the frequency band of 70–90 kHz; (d) radial magnetic signals of two toroidally separated HFMPA magnetic probes (HM6 and HM8), filtered in the frequency band of 70–90 kHz; the labels HM2, HM5, and MH8, etc. represent the high-frequency magnetic probes in different positions as shown in Fig. 4, the arrows in (a), (b) indicate the poloidal propagating direction of the magnetic fluctuations in the frequency range of 70–90 kHz, while the arrows in (c), (d) indicate the toroidal propagating direction and of the magnetic fluctuations in the frequency range of 70–90 kHz.

    表 1  CFQS-T仿星器高频磁探针标定后的有效面积($ NS $)

    Table 1.  Calibrated effective areas ($ NS $) of HFMPA magnetic probes on CFQS-T.

    HFMPA
    magnetic
    probe
    number
    $ NS $ in toroidal
    direction/m2
    $ NS_{ } $ in radial
    direction/m2
    $NS$ in poloidal
    direction/m2
    1 0.02003 0.02025 0.01756
    2 0.02038 0.02030 0.01802
    3 0.01999 0.02037 0.01729
    4 0.02049 0.02095 0.01758
    5 0.02040 0.02100 0.01797
    6 0.01998 0.02022 0.01791
    7 0.02040 0.02033 0.01721
    8 0.01961 0.02097 0.01797
    下载: 导出CSV
    Baidu
  • [1]

    Gates D A, Anderson D, Anderson S, Zarnstorff M, Spong D A, Weitzner H, Neilson G H, Ruzic D, Andruczyk D, Harris J H, Mynick H, Hegna C C, Schmitz O, Talmadge J N, Curreli D, Maurer D, Boozer A H, Knowlton S, Allain J P, Ennis D, Wurden G, Reiman A, Lore J D, Landreman M, Freidberg J P, Hudson S R, Porkolab M, Demers D, Terry J, Edlund E, Lazerson S A, Pablant N, Fonck R, Volpe F, Canik J, Granetz R, Ware A, Hanson J D, Kumar S, Deng C, Likin K, Cerfon A, Ram A, Hassam A, Prager S, Paz-Soldan C, Pueschel M J, Joseph I, Glasser A H 2018 J. Fusion Energ. 37 51Google Scholar

    [2]

    Yoshida M, McDermott R M, Angioni C, Camenen Y, Citrin J, Jakubowski M, Hughes J W, Idomura Y, Mantica P, Mariani A, Mordijck S, Paul E J, Tala T, Verdoolaege G, Zocco A, Casson F J, Dif-Pradalier G, Duval B, Grierson B A, Kaye S M, Manas P, Maslov M, Odstrcil T, Rice J E, Schmitz L, Sciortino F, Solano E R, Staebler G, Valovič M, Wolfrum E, Snipes J A 2025 Nucl. Fusion 65 033001Google Scholar

    [3]

    Toi K, Ogawa K, Isobe M, Osakabe M, Spong D A, Todo Y 2011 Plasma Phys. Contr. Fusion 53 024008Google Scholar

    [4]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [5]

    Rahbarnia K, Thomsen H, Schilling J, vaz Mendes S, Endler M, Kleiber R, Könies A, Borchardt M, Slaby C, Bluhm T, Zilker M, Carvalho B B 2021 Plasma Phys. Contr. Fusion 63 015005Google Scholar

    [6]

    Salewski M, Spong D A, Aleynikov P, Bilato R, Breizman B N, Briguglio S, Cai H, Chen L, Chen W, Duarte V N, Dumont R J, Falessi M V, Fitzgerald M, Fredrickson E D, García-Muñoz M, Gorelenkov N N, Hayward-Schneider T, Heidbrink W W, Hole M J, Kazakov Y O, Kiptily V G, Könies A, Kurki-Suonio T, Lauber P, Lazerson S A, Lin Z, Mishchenko A, Moseev D, Muscatello C M, Nocente M, Podestà M, Polevoi A, Schneider M, Sharapov S E, Snicker A, Todo Y, Qiu Z, Vlad G, Wang X, Zarzoso D, Van Zeeland M A, Zonca F, Pinches S D 2025 Nucl. Fusion 65 043002Google Scholar

    [7]

    Xanthopoulos P, Mynick H E, Helander P, Turkin Y, Plunk G G, Jenko F, Gorler T, Told D, Bird T, Proll J H 2014 Phys. Rev. Lett. 113 155001Google Scholar

    [8]

    Zhong W L, Zhao K J, Zou X L, Dong J Q 2020 Rev. Mod. Plasma Phys. 4 11Google Scholar

    [9]

    Diallo A, Laggner F M 2021 Plasma Phys. Contr. Fusion 63 013001Google Scholar

    [10]

    Fujisawa A 2021 Proc. Jpn. Acad Ser. B Phys. Biol. Sci. 97 103Google Scholar

    [11]

    Nespoli F, Masuzaki S, Tanaka K, Ashikawa N, Shoji M, Gilson E P, Lunsford R, Oishi T, Ida K, Yoshinuma M, Takemura Y, Kinoshita T, Motojima G, Kenmochi N, Kawamura G, Suzuki C, Nagy A, Bortolon A, Pablant N A, Mollen A, Tamura N, Gates D A, Morisaki T 2022 Nat. Phys. 18 350Google Scholar

    [12]

    Sánchez E, Bañón Navarro A, Wilms F, Borchardt M, Kleiber R, Jenko F 2023 Nucl. Fusion 63 046013Google Scholar

    [13]

    Liu Y Q, Tan Y, Pan O, Ke R, Wang W H, Gao Z 2014 Rev. Sci. Instrum. 85 11E802Google Scholar

    [14]

    Cheng Z B, Tan Y, Gao Z, Wang S Z, Wang B B, Liu W B 2021 Rev. Sci. Instrum. 92 053518Google Scholar

    [15]

    Guo D J, Hu Q M, Li D, Shen C S, Wang N C, Huang Z, Huang M X, Ding Y H, Xu G, Yu Q Q, Tang Y J, Zhuang G 2017 Rev. Sci. Instrum. 88 123502Google Scholar

    [16]

    Han D L, Shen C S, Wang N C, Li D, Mao F Y, Ren Z K, Ding Y H, the J-TEXT Team 2021 Plasma Sci. Tech. 23 055104Google Scholar

    [17]

    Tu C, Liu A D, Li Z C, Tan M S, Luo B, You W, Li C G, Bai W, Fu C S, Huang F C, Xiao B J, Shen B, Shi T H, Chen D L, Mao W Z, Li H, Xie J L, Lan T, Ding W X, Xiao C J, Liu W D 2017 Rev. Sci. Instrum. 88 093513Google Scholar

    [18]

    Liang S Y, Ji X Q, Sun T F, Xu Y, Lu J, Yuan B S, Ren L L, Yang Q W 2017 AIP Adv. 7 125004Google Scholar

    [19]

    Chen D L, Shen B, Shi T H, Guo B H, Li T Y, Chen L X, Xue M M, Chu N 2023 Plasma Sci. Tech. 25 125102Google Scholar

    [20]

    Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Hu G H, Liu L N, Zhang W, Chen M, Zheng Y Y, Yuan Z, Wang Y, Xu Z H, Xu L Q, Zi P F, Chen L, Liu S C, Wu D G, Ding G F, Meng L Y, Wang Z C, Zang Q, Wu M Q, Zhu X, Hao B L, Lin X D, Gao X, Wang L, Xu G S 2023 Plasma Sci. Tech. 25 075105Google Scholar

    [21]

    Lan H, Shi T H, Yan N, Li X Q, Li S, Chen R, Duan M Y, Liu L N, Chen M, Chen L X, Chen D L, Shen B, Wang Y, Xu Z H, Lu Z K, Shao L M, Zheng Y Y, Yuan Z, Xu L Q, Hu G H, Chen L, Liu S C, Zi P F, Wang P, Wu D G, Ding G F, Meng L Y, Shen J F, Yang S, Shao J R, Zang Q, Wang L, Xu G S 2024 Fusion Eng. Des. 207 114636Google Scholar

    [22]

    Ouyang T B, Qian Y Z, Liu S Q, Yang X S, Chen X C 2022 AIP Adv. 12 015314Google Scholar

    [23]

    Strait E J 2006 Rev. Sci. Instrum. 77 023502Google Scholar

    [24]

    Heeter R F, Fasoli A F, Ali-Arshad S, Moret J M 2000 Rev. Sci. Instrum. 71 4092Google Scholar

    [25]

    Artaserse G, Baruzzo M, Henriques R B, Gerasimov S, Lam N, Tsalas M 2019 Fusion Eng. Des. 146 2781Google Scholar

    [26]

    Hole M J, Appel L C, Martin R 2009 Rev. Sci. Instrum. 80 123507Google Scholar

    [27]

    Moreau P, Le-Luyer A, Spuig P, Malard P, Saint-Laurent F, Artaud J F, Morales J, Faugeras B, Heumann H, Cantone B, Moreau M, Brun C, Nouailletas R, Nardon E, Santraine B, Berne A, Kumari P, Belsare S, Team W 2018 Rev. Sci. Instrum. 89 10J109Google Scholar

    [28]

    Takechi M, Matsunaga G, Sakurai S, Sasajima T, Yagyu J, Hoshi R, Kawamata Y, Kurihara K, Nishikawa T, Ryo T, Kagamihara S, Nakamura K 2015 Fusion Eng. Des. 96-97 985

    [29]

    Haskey S R, Blackwell B D, Seiwald B, Hole M J, Pretty D G, Howard J, Wach J 2013 Rev. Sci. Instrum. 84 093501Google Scholar

    [30]

    Sakakibara S, Yamada H 2010 Fusion Sci. Tech. 58 471Google Scholar

    [31]

    Endler M, Brucker B, Bykov V, Cardella A, Carls A, Dobmeier F, Dudek A, Fellinger J, Geiger J, Grosser K, Grulke O, Hartmann D, Hathiramani D, Höchel K, Köppen M, Laube R, Neuner U, Peng X, Rahbarnia K, Rummel K, Sieber T, Thiel S, Vorköper A, Werner A, Windisch T, Ye M Y 2015 Fusion Eng. Des. 100 468Google Scholar

    [32]

    Ascasibar E, Lapayese F, Soleto A, Jimenez-Denche A, Cappa A, Pons-Villalonga P, Portas A B, Martin G, Barcala J M, Garcia-Gomez R, Chamorro M, Cebrian L, Anton R, Bueno L, Reynoso C, Guisse V, Lopez-Fraguas A 2022 Rev. Sci. Instrum. 93 093508Google Scholar

    [33]

    Liu H F, Shimizu A, Xu Y H, Okamura S, Kinoshita S, Isobe M, Li Y B, Xiong G, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Yin D P, Wang Y, Murase T, Nakagawa S, Tang C J 2021 Nucl. Fusion 61 016014Google Scholar

    [34]

    Shimizu A, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Yoshimura Y, Suzuki C, Osakabe M, Murase T, Nakagawa S, Tanoue H, Xu Y, Liu H F, Liu H, Huang J, Wang X, Cheng J, Xiong G, Tang C, Yin D, Wan Y 2022 Nucl. Fusion 62 016010Google Scholar

    [35]

    Wang X Q, Xu Y, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X, Liu H, Cheng J, Tang C J 2021 Nucl. Fusion 61 036021Google Scholar

    [36]

    黄捷, 李沫杉, 覃程, 王先驱 2022 71 185202Google Scholar

    Huang J, Li M S, Qin C, Wang X Q 2022 Acta Phys. Sin. 71 185202Google Scholar

    [37]

    Liu H F, Zhang J, Xu Y H, Shimizu A, Cooper W A, Okamura S, Isobe M, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Tang C J 2023 Nucl. Fusion 63 026018Google Scholar

    [38]

    苏祥, 王先驱, 符添, 许宇鸿 2023 72 215205Google Scholar

    Su X, Wang X Q, Fu T, Xu Y H 2023 Acta Phys. Sin. 72 215205Google Scholar

    [39]

    李丹, 刘海峰 2025 74 055203Google Scholar

    Li D, Liu H F 2025 Acta Phys. Sin. 74 055203Google Scholar

    [40]

    Cheng J, et al. Construction progress of the Chinese First Quasi-axisymmetric Stellarator (CFQS) and preliminary experimental results on CFQS-Test device Plasma Phys. Control. Fusion (PPCF-105174

    [41]

    Lan H, et al. Development of a low-frequency magnetic probe array for the quasi-axisymmetric stellarator CFQS-T Fusion Engineering and Design (FUSENGDES-D-25-00438

    [42]

    黄晓莉 2009 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Huang X L 2009 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [43]

    许亚东2019 博士学位论文(太原: 中北大学)

    Xu Y D 2019 Ph. D. Dissertation (Taiyuan: North University of China

    [44]

    胡庆, 刘文晶, 赖小龙, 张德民 2021 电信传输原理、系统及工程(西安: 西安电子科技大学出版社) 第26页

    Hu Q, Liu W J, Lai X L, Zhang D M 2021 Telecommunication Transmission Principles, Systems and Engineering (Xi'an: Xidian University Press) p26

    [45]

    陈力行, 陈大龙, 沈飊, 钱金平, 陈明 2024 核聚变与等离子体物理 44 105

    Chen L X, Chen D L, Shen B, Qian J P, Chen M 2024 Nucl. Fusion Plasma Phys. 44 105

    [46]

    Zhang J Z, Ji X Q, Sun T F, Liang S Y, Wang A, Wang J, Li J X, Liu J, Yang Q W 2021 ucl. Fusion Plasma Phys. 41 585 [张均钊, 季小全, 孙腾飞, 梁绍勇, 王傲, 王金, 李佳鲜, 刘健, 杨青巍 2021 核聚变与等离子体物理 41 585]

    Zhang J Z, Ji X Q, Sun T F, Liang S Y, Wang A, Wang J, Li J X, Liu J, Yang Q W 2021 ucl. Fusion Plasma Phys. 41 585

    [47]

    Shen B 2016 Fusion Eng. Des. 112 969Google Scholar

  • [1] 李加林, 张国峰, 李思瑶, 王甜珺, 魏雪齐, 李华, 古元冬, 孙立敏. 应用于超导脑磁系统的集成SQUID芯片的设计与性能评估.  , 2025, 74(19): . doi: 10.7498/aps.74.20250426
    [2] 李丹, 刘海峰. 中国首台准环对称仿星器中线圈形变对磁拓扑结构的影响.  , 2025, 74(5): 055203. doi: 10.7498/aps.74.20241606
    [3] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制.  , 2024, 73(11): 115203. doi: 10.7498/aps.73.20240273
    [4] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用.  , 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [5] 苏祥, 王先驱, 符添, 许宇鸿. CFQS准环对称仿星器低$\boldsymbol \beta$等离子体中三维磁岛的抑制机制.  , 2023, 72(21): 215205. doi: 10.7498/aps.72.20230546
    [6] 陈彦君, 王圣业, 符翔, 刘伟. 基于νt尺度方程的雷诺应力模型初步研究.  , 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [7] 黄捷, 李沫杉, 覃程, 王先驱. 中国首台准环对称仿星器中离子温度梯度模的模拟研究.  , 2022, 71(18): 185202. doi: 10.7498/aps.71.20220729
    [8] 李朝辉, 赵建科, 徐亮, 刘峰, 郭毅, 刘锴, 赵青. 点源透过率测试系统精度标定与分析.  , 2016, 65(11): 114206. doi: 10.7498/aps.65.114206
    [9] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用.  , 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [10] 彭澍源, 王秋实, 张兆传, 罗积润. 回旋行波管多模稳态理论及初步应用.  , 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [11] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究.  , 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [12] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究.  , 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [13] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用.  , 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [14] 王 冬, 陈代兵, 范植开, 邓景康. HEM11模磁绝缘线振荡器的高频分析.  , 2008, 57(8): 4875-4882. doi: 10.7498/aps.57.4875
    [15] 杨海亮, 邱爱慈, 张嘉生, 何小平, 孙剑锋, 彭建昌, 汤俊萍, 任书庆, 欧阳晓平, 张国光, 黄建军, 杨 莉, 王海洋, 李洪玉, 李静雅. “闪光二号”加速器HPIB的产生及应用初步结果.  , 2004, 53(2): 406-412. doi: 10.7498/aps.53.406
    [16] 孙喜明, 姚朝晖, 杨京龙. BGK方法在三维非结构网格上的初步应用.  , 2002, 51(9): 1942-1948. doi: 10.7498/aps.51.1942
    [17] 陈晓波, N.Sawanobori, 聂玉昕. 氟氧化物玻璃陶瓷中交叉能量传递与荧光防伪的初步研究.  , 2000, 49(12): 2488-2493. doi: 10.7498/aps.49.2488
    [18] 江少恩, 郑志坚, 成金秀, 孙可煦, 杨家敏, 缪文勇, 王红斌. 管靶X射线辐射输运初步研究Ⅱ.实验测量与分析.  , 2000, 49(6): 1101-1105. doi: 10.7498/aps.49.1101
    [19] 周介湘, 郑培菊, 马礼敦. F函数仿派特逊函数用法的初步探讨.  , 1964, 20(2): 117-130. doi: 10.7498/aps.20.117
    [20] 朱物华, 张仲桂. 低频与高频滤波器之瞬流.  , 1936, 2(2): 154-168. doi: 10.7498/aps.2.154
计量
  • 文章访问数:  646
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-18
  • 修回日期:  2025-08-22
  • 上网日期:  2025-08-27
  • 刊出日期:  2025-09-05

/

返回文章
返回
Baidu
map