-
金属氢化物是先进反应堆研发中具有重要应用前景的中子慢化剂材料,其热中子散射数据对反应堆设计精度具有重要影响。本文通过准随机结构和第一性原理晶格动力学方法,计算了亚化学计量氢化锆和氢化钇的声子态密度等参数,以此为基础,基于核数据处理程序NECP-Atlas计算获得了不同亚化学计量氢化物的热中子散射律数据,并分析了氢含量对氢化物热散射截面以及临界装置有效增殖系数的影响。研究表明:氢化物中氢含量的变化导致热散射截面存在差异,进而影响核反应堆的计算结果,对于装载氢化锆的ICT003和ICT013系列基准题(H/Zr约为1.6),采用其他氢含量氢化锆的热散射律数据导致有效增殖系数最大偏差为104pcm;对于装载ZrH2的HCM003系列基准题,采用其他氢含量氢化锆热散射律数据导致有效增殖系数最大偏差为147pcm。本文数据集可在科学数据银行数据库https://www.doi.org/10.57760/sciencedb.j00213.00179中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/UBnIVj)。Metal hydrides are promising moderator materials in advanced reactors, where their thermal neutron scattering cross sections significantly impact the accuracy of reactor design. This study employed special quasi random structure (SQS) and first-principles lattice dynamics methods to calculate parameters such as the phonon density of states for sub-stoichiometric zirconium hydride (ZrHx) and yttrium hydride (YHx). Based on these parameters, thermal scattering law (TSL) data for sub-stoichiometric hydrides were generated using the nuclear data processing code NECP-Atlas. The influence of hydrogen content on the thermal scattering cross sections of hydrides and the effective multiplication factor (keff) of critical assemblies was analyzed. The study shows that variations in hydrogen content within hydrides lead to differences in thermal scattering cross sections, consequently impacting the neutron transport calculations of nuclear reactor. For the ICT003 and ICT013 benchmarks loaded with ZrHx (with H/Zr ≈ 1.6), using TSL derived from with other hydrogen contents resulted in a maximum deviation in the keff of 104 pcm. For the HCM003 benchmarks loaded with ZrH2, the use of TSL from ZrHx with other hydrogen contents led to a maximum deviation in the keff of 147 pcm. The datasets presented in this paper, including the density of states and thermal scattering cross sections of ZrHx and YHx, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00179 (Please use the private access link https://www.scidb.cn/s/UBnIVj to access the dataset during the peer review process).
-
Keywords:
- Zirconium hydride /
- Yttrium hydride /
- Thermal neutron scattering law /
- Thermal neutron scattering cross section
-
[1] Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the Material Properties of Yttrium Hydride for High Temperature Moderator Applications Report
[2] Paramonov D V, El-Genk M S 1994 Nuclear Technology 108 157
[3] Evans J A, Sweet R T, Medvedev P G, Wagner A R, Parisi C, Lange T L, Perez E, Rice F, Jue J F, Woolstenhulme E 2024 Journal of Nuclear Materials 598 25
[4] Snoj L, Zerovnik G, Trkov A 2012 Applied Radiation & Isotopes 70 483
[5] Betzler B R, Ade B J, Jain P K, Wysocki A, Chesser P C, Kirkland W M, Cetiner M S, Bergeron A, Heidet F, Terrani K 2022 Nuclear Science and Engineering 196 1399
[6] Mehta V, Vogel S, Kotlyar D, Cooper M 2022 Metals 12 199
[7] Wang X, Tang M, Jiang M-X, Chen Y-C, Liu Z-X, Deng H-Q 2024 Chinese Physics B 33 076103
[8] Mehta V K, Vogel S C, Shivprasad A P, Luther E P, Cooper M W D 2021 Journal of Nuclear Materials 547 152837
[9] Trkov A, Herman M, Brown D 2012 ENDF-6 formats manual Report
[10] Tang Y, Zu T, Yi S, Cao L, Wu H 2020 Annals of Nuclear Energy 153 108044
[11] Squires G L 1996 Introduction to the theory of thermal neutron scattering (Courier Corporation)
[12] Zu T, Tang Y, Wang L, Cao L, Wu H 2021 Annals of Nuclear Energy 161 108489
[13] Wang L, Wan C, Cao L, Wu H, Sjstrand H 2021 Annals of Nuclear Energy 151 107920
[14] Švajger I, Fleming N, Hawari A, Laramee B, Noguere G, Snoj L, Trkov A 2025 Nuclear Engineering and Technology 57 103834
[15] Mehta V K, Cooper M W D, Wilkerson R B, Kotlyar D, Vogel S C 2021 Nuclear science and engineering: the journal of the American Nuclear Society 195 1
[16] Mehta V K, Rehn D A, Olsson P A T 2024 Journal of Nuclear Engineering (JNE) 5 330
[17] Trainer A, Forget B, Holmes J, Wormald J, Zerkle M 2025 Annals of Nuclear Energy 212 111034
[18] Wormald J, Zerkle M, Holmes J 2021 Journal of Nuclear Engineering 2 105
[19] Zerkle M L, Holmes J C, Wormald J L 2021 The European Physical Journal Conferences 247 09015
[20] Ge Z, Xu R, Wu H, Huang X 2020 The European Physical Journal Conferences 239 09001
[21] Zu T, Wu C, Feng H, Ma Y, Cao L, Wu H, Tang Y 2024 Progress in Nuclear Energy 177 7
[22] Squires G L, Lynn J W 1978 Physics Today 32 69
[23] Placzek G 1952 Physical review 86 377
[24] Borgonovi G 1969 COHERENT SCATTERING LAW FOR POLYCRYSTALLINE BERYLLIUM Report
[25] Fleming N C 2021 Advanced Methods of Thermal Neutron Scattering Analysis for Reactor Multi-Physics Applications (North Carolina State University)
[26] Jain A, Ong S P, Hautier G, Chen W, Persson K A 2013 APL Materials 1 011002
[27] Kresse G, Furthmüller J 1996 Computational materials science 6 15
[28] Gonze X, Lee C 1997 Physical Review B Condensed Matter 55 10355
[29] Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Physical Review B 20 5112
[30] He Q, Zheng Q, Li J, Wu H, Xu J 2021 Annals of Nuclear Energy 151 107978
[31] Briggs J B, Scott L, Nouri A 2003 Nuclear Science & Engineering the Journal of the American Nuclear Society 145 1
计量
- 文章访问数: 199
- PDF下载量: 8
- 被引次数: 0