搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚化学计量金属氢化物热散射律数据计算分析

马宇图 祖铁军 吴宏春 曹良志

引用本文:
Citation:

亚化学计量金属氢化物热散射律数据计算分析

马宇图, 祖铁军, 吴宏春, 曹良志

Calculation and Analysis of Thermal Scattering Law Data for Sub-Stoichiometric Metal Hydrides

MA Yutu, ZU Tiejun, WU Hongchun, CAO Liangzhi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 金属氢化物是先进反应堆研发中具有重要应用前景的中子慢化剂材料,其热中子散射数据对反应堆设计精度具有重要影响。本文通过准随机结构和第一性原理晶格动力学方法,计算了亚化学计量氢化锆和氢化钇的声子态密度等参数,以此为基础,基于核数据处理程序NECP-Atlas计算获得了不同亚化学计量氢化物的热中子散射律数据,并分析了氢含量对氢化物热散射截面以及临界装置有效增殖系数的影响。研究表明:氢化物中氢含量的变化导致热散射截面存在差异,进而影响核反应堆的计算结果,对于装载氢化锆的ICT003和ICT013系列基准题(H/Zr约为1.6),采用其他氢含量氢化锆的热散射律数据导致有效增殖系数最大偏差为104pcm;对于装载ZrH2的HCM003系列基准题,采用其他氢含量氢化锆热散射律数据导致有效增殖系数最大偏差为147pcm。本文数据集可在科学数据银行数据库https://www.doi.org/10.57760/sciencedb.j00213.00179中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/UBnIVj)。
    Metal hydrides are promising moderator materials in advanced reactors, where their thermal neutron scattering cross sections significantly impact the accuracy of reactor design. This study employed special quasi random structure (SQS) and first-principles lattice dynamics methods to calculate parameters such as the phonon density of states for sub-stoichiometric zirconium hydride (ZrHx) and yttrium hydride (YHx). Based on these parameters, thermal scattering law (TSL) data for sub-stoichiometric hydrides were generated using the nuclear data processing code NECP-Atlas. The influence of hydrogen content on the thermal scattering cross sections of hydrides and the effective multiplication factor (keff) of critical assemblies was analyzed. The study shows that variations in hydrogen content within hydrides lead to differences in thermal scattering cross sections, consequently impacting the neutron transport calculations of nuclear reactor. For the ICT003 and ICT013 benchmarks loaded with ZrHx (with H/Zr ≈ 1.6), using TSL derived from with other hydrogen contents resulted in a maximum deviation in the keff of 104 pcm. For the HCM003 benchmarks loaded with ZrH2, the use of TSL from ZrHx with other hydrogen contents led to a maximum deviation in the keff of 147 pcm. The datasets presented in this paper, including the density of states and thermal scattering cross sections of ZrHx and YHx, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00179 (Please use the private access link https://www.scidb.cn/s/UBnIVj to access the dataset during the peer review process).
  • [1]

    Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the Material Properties of Yttrium Hydride for High Temperature Moderator Applications Report

    [2]

    Paramonov D V, El-Genk M S 1994 Nuclear Technology 108 157

    [3]

    Evans J A, Sweet R T, Medvedev P G, Wagner A R, Parisi C, Lange T L, Perez E, Rice F, Jue J F, Woolstenhulme E 2024 Journal of Nuclear Materials 598 25

    [4]

    Snoj L, Zerovnik G, Trkov A 2012 Applied Radiation & Isotopes 70 483

    [5]

    Betzler B R, Ade B J, Jain P K, Wysocki A, Chesser P C, Kirkland W M, Cetiner M S, Bergeron A, Heidet F, Terrani K 2022 Nuclear Science and Engineering 196 1399

    [6]

    Mehta V, Vogel S, Kotlyar D, Cooper M 2022 Metals 12 199

    [7]

    Wang X, Tang M, Jiang M-X, Chen Y-C, Liu Z-X, Deng H-Q 2024 Chinese Physics B 33 076103

    [8]

    Mehta V K, Vogel S C, Shivprasad A P, Luther E P, Cooper M W D 2021 Journal of Nuclear Materials 547 152837

    [9]

    Trkov A, Herman M, Brown D 2012 ENDF-6 formats manual Report

    [10]

    Tang Y, Zu T, Yi S, Cao L, Wu H 2020 Annals of Nuclear Energy 153 108044

    [11]

    Squires G L 1996 Introduction to the theory of thermal neutron scattering (Courier Corporation)

    [12]

    Zu T, Tang Y, Wang L, Cao L, Wu H 2021 Annals of Nuclear Energy 161 108489

    [13]

    Wang L, Wan C, Cao L, Wu H, Sjstrand H 2021 Annals of Nuclear Energy 151 107920

    [14]

    Švajger I, Fleming N, Hawari A, Laramee B, Noguere G, Snoj L, Trkov A 2025 Nuclear Engineering and Technology 57 103834

    [15]

    Mehta V K, Cooper M W D, Wilkerson R B, Kotlyar D, Vogel S C 2021 Nuclear science and engineering: the journal of the American Nuclear Society 195 1

    [16]

    Mehta V K, Rehn D A, Olsson P A T 2024 Journal of Nuclear Engineering (JNE) 5 330

    [17]

    Trainer A, Forget B, Holmes J, Wormald J, Zerkle M 2025 Annals of Nuclear Energy 212 111034

    [18]

    Wormald J, Zerkle M, Holmes J 2021 Journal of Nuclear Engineering 2 105

    [19]

    Zerkle M L, Holmes J C, Wormald J L 2021 The European Physical Journal Conferences 247 09015

    [20]

    Ge Z, Xu R, Wu H, Huang X 2020 The European Physical Journal Conferences 239 09001

    [21]

    Zu T, Wu C, Feng H, Ma Y, Cao L, Wu H, Tang Y 2024 Progress in Nuclear Energy 177 7

    [22]

    Squires G L, Lynn J W 1978 Physics Today 32 69

    [23]

    Placzek G 1952 Physical review 86 377

    [24]

    Borgonovi G 1969 COHERENT SCATTERING LAW FOR POLYCRYSTALLINE BERYLLIUM Report

    [25]

    Fleming N C 2021 Advanced Methods of Thermal Neutron Scattering Analysis for Reactor Multi-Physics Applications (North Carolina State University)

    [26]

    Jain A, Ong S P, Hautier G, Chen W, Persson K A 2013 APL Materials 1 011002

    [27]

    Kresse G, Furthmüller J 1996 Computational materials science 6 15

    [28]

    Gonze X, Lee C 1997 Physical Review B Condensed Matter 55 10355

    [29]

    Gajdos M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Physical Review B 20 5112

    [30]

    He Q, Zheng Q, Li J, Wu H, Xu J 2021 Annals of Nuclear Energy 151 107978

    [31]

    Briggs J B, Scott L, Nouri A 2003 Nuclear Science & Engineering the Journal of the American Nuclear Society 145 1

  • [1] 谭博宇, 王朝辉, 吴鸿毅, 韩银录, 肖石良, 王昊, 汪文烨, 王记民, 李昱兆, 刘颖一, 王金成, 陶曦, 阮锡超. 中子诱发52Cr非弹性散射截面测量.  , doi: 10.7498/aps.74.20241660
    [2] 李明, 金平实, 曹逊. 稀土含氧氢化物光致变色薄膜研究现状.  , doi: 10.7498/aps.71.20221046
    [3] 王立鹏, 江新标, 吴宏春, 樊慧庆. 氮化铀热中子截面的第一性原理计算.  , doi: 10.7498/aps.67.20180834
    [4] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质.  , doi: 10.7498/aps.63.016801
    [5] 袁健美, 毛宇亮. 氢化与非氢化石墨烯纳米条带的密度泛函研究.  , doi: 10.7498/aps.60.103103
    [6] 郭立强, 丁建宁, 杨继昌, 王书博, 叶枫, 程广贵, 凌智勇, 范慧娟, 袁宁一, 王秀琴. 氢化硅薄膜光吸收近似特性研究.  , doi: 10.7498/aps.59.8184
    [7] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究.  , doi: 10.7498/aps.57.3126
    [8] 李世彬, 吴志明, 李 伟, 于军胜, 蒋亚东, 廖乃镘. 氢化硅薄膜的晶化机理研究.  , doi: 10.7498/aps.57.7114
    [9] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究.  , doi: 10.7498/aps.57.5782
    [10] 朱美芳. 氢化非晶硅的低温输运.  , doi: 10.7498/aps.45.499
    [11] 沈皓, 承焕生, 汤家镛, 杨福家. 碳对α的非卢瑟福背散射截面研究.  , doi: 10.7498/aps.43.1569
    [12] 陈光华, 于工, 张仿清, 吴天喜. 氢化非晶锗碳薄膜中的自旋缺陷态.  , doi: 10.7498/aps.41.1700
    [13] 鲍希茂, 黄信凡, 邢昆山. 氢化非晶硅激光结晶温场控制模型.  , doi: 10.7498/aps.36.74
    [14] 戴国才, 关大任, 邓从豪. 晶态硅中氢化单空位的络合物模型.  , doi: 10.7498/aps.35.709
    [15] 阮景辉, 陈桂英, 张南宁. 氢化锆(ZrH1.7)和钯氢(PdH0.7)光学声子的温度效应.  , doi: 10.7498/aps.35.389
    [16] 曹明中, 王福元, 汪根时, 宋德瑛, 陈桂英, 阮景辉. 金属氢化物LaNi4.5Mn0.5Hx的热中子非弹性散射谱.  , doi: 10.7498/aps.34.689
    [17] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱.  , doi: 10.7498/aps.30.538
    [18] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射.  , doi: 10.7498/aps.29.257
    [19] 陆挺, 阮景辉, 李竹起, 萨本豪, 董秀芳. 氢化锆中氢的热中子散射总截面.  , doi: 10.7498/aps.24.210
    [20] 周同庆, 吴学周, 柳大纲. 水中火花所生氢化铜之吸收光带.  , doi: 10.7498/aps.3.20
计量
  • 文章访问数:  199
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-24

/

返回文章
返回
Baidu
map