-
硼氢化物(XBH4,X=Li,Na,K)具有“元素协同”(硼吸收截面高、氢的慢化能力好)效应,可以视为良好的中子屏蔽材料。但是,目前国际评价数据库中缺少硼氢化物实验和评价热散射数据,不利于该材料的屏蔽和慢化性能评估。本文基于密度泛函的第一性原理计算了晶格参数、电子结构和声子态密度等材料性质,并研制了相应的S(α,β)数据和热中子散射截面。模拟得到的晶格参数与实验符合较好,对比了XBH4的电子结构和声子态密度,给出了硼氢化物中阳离子X、B、H对应的相干弹性散射截面、非相干弹性散射截面和非弹性散射截面,结果表明,由于阳离子X的不同,硼氢化物XBH4中各核素的热中子截面存在明显差异。为评估硼氢化物热散射数据对中子屏蔽效应的影响,本研究采用简化聚变源模型,使用OpenMC程序对比了不同物理模型下的泄漏中子能谱。结果显示,自由气体模型(FGM)由于忽略了晶格束缚效应,对中子的慢化能力描述不准确,此外,由于氢元素较大的非相干散射截面,各核素相干弹性散射截面对中子能谱的影响较小。本文的研究结果填补了硼氢化物热中子截面数据的缺失,为进一步研究硼氢化物作为中子屏蔽材料的应用奠定了基础。本文数据集可在科学数据银行数据库https://www.doi.org/10.57760/sciencedb.j00213.00219中访问(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/3meuq2)。Borohydrides (XBH4, X = Li, Na, K) exhibit an ”elemental synergy” effect, characterized by the high neutron absorption cross-section of boron and the excellent moderation capability of hydrogen, making them promising candidates for neutron shielding materials. However, the current lack of experimental and evaluated thermal scattering data for borohydrides in international nuclear data libraries hinders the accurate assessment of their shielding and moderation performance.In this study, material properties including lattice parameters, electronic structures, and phonon densities of states were calculated based on first-principles density functional theory. Subsequently, the corresponding S(α, β) data and thermal neutron scattering cross-sections were developed. The simulated lattice parameters show good agreement with experimental data. By comparing the electronic structures and phonon densities of states of XBH4, the coherent elastic, incoherent elastic, and inelastic scattering cross-sections for the cations X, B, and H were obtained. The results indicate that the thermal neutron cross-sections of the constituent nuclides in XBH4 exhibit significant differences depending on the cation X.To evaluate the impact of thermal scattering data on neutron shielding effects, a simplified fusion source model was employed using the OpenMC code to compare the leaked neutron energy spectra under different physical models. The results demonstrate that the Free Gas Model (FGM) provides an inaccurate description of neutron moderation due to its neglect of lattice binding effects. Furthermore, owing to the large incoherent scattering cross-section of hydrogen, the coherent elastic scattering cross-sections of the various nuclides have a negligible impact on the neutron energy spectrum. This research fills the gap in thermal neutron cross-section data for borohydrides and establishes a foundation for further investigations into their application as neutron shielding materials. These findings partially fill the gap in thermal neutron cross-section data for borohydrides and lay a foundation for their future application as neutron shielding materials.The datasets presented in this paper, including the ScienceDB, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00219(Please use the private access link https://www.scidb.cn/s/3meuq2).
-
Keywords:
- Borohydrides /
- First-principles calculations /
- Phonon spectrum /
- Thermal neutron scattering cross section
-
[1] Wormald J L, Hawari A I 2017 Prog. Nucl. Energy 101 461
[2] Crozier J, Hawari A 2023 EPJ Web Conf. 284 17005
[3] Chapman C W, Arbanas G, Brown J, Ramić K, Cheng Y Q, Lin J, Abernathy D L, Kolesnikov A I, Stone M B, Daemen L, Cuesta A R, Hu X X 2023 EPJ Web Conf. 284 17004
[4] El Barbari M, El Bardouni T, El Yaakoubi H, Boulaich Y, Lahdour M, Ziani H, Berriban I 2022 Appl. Radiat. Isot. 187 110313
[5] Romano P K, Nelson A G 2023 EPJ Web Conf. 284 17011
[6] Zheng L, Feng Z Y, Wang K 2021 EPJ Web Conf. 247 09012
[7] Filinchuk Y, Chernyshov D, Nevidomskyy A, Dmitriev V 2008 Angew. Chem. 120 539
[8] Nakano S, Fujihisa H, Yamawaki H, Kikegawa T 2015 J. Phys. Chem. C 119 3911
[9] Urgnani J, Torres F J, Palumbo M, Baricco M 2008 Int. J. Hydrogen Energy 33 3111
[10] Kumar R S, Kim E, Cornelius A L 2008 J. Phys. Chem. C 112 8452
[11] Lotfalian M, Allaf M A, Mansouri M 2024 arXiv:2406.03640v1 [physics.atm-clus]
[12] Macfarlane R E, Muir D W, Boicourt R M, Kahler A C, Conlin J L, Haeck W 2017 The NJOY Nuclear Data Processing System, Version 2016 (Los Alamos: Los Alamos National Lab), pp 654–721
[13] Ramić K, Damian J I M, Kittelmann T, Di Julio D D, Campi D, Bernasconi M, Gorini G, Santoro V 2022 Nucl. Instrum. Methods Phys. Res. A 1027 166227
[14] Hawari A 2014 Nucl. Data Sheets 118 172
[15] Zhang Z C, Hu J F, Chen J G, Cai X Z 2023 Nucl. Tech. 46 070605. (in Chinese) [张志成, 胡继峰, 陈金根, 蔡翔舟 2023 核技术 46 070605]
[16] Wang L P, Jiang X B, Wu H C, Fan H Q 2018 Acta Phys. Sin. 67 290. (in Chinese) [王立鹏, 江新标, 吴宏春, 樊慧庆 2018 67 290]
[17] Vajeeston P, Ravindran P, Kjekshus A, Fjellvag H 2005 J. Alloys Compd. 387 97
[18] Benzidi H, Garara M, Lakhal M, Abdalaoui M, Benyoussef A, Louilidi M, Hamedoun M, Mounkachi O 2018 Int. J. Hydrogen Energy 43 6625
[19] Marizy A, Geneste G, Garbarino G, Loubeyre P 2021 RSC Adv. 11 25274
[20] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys.: Condens. Matter 35 353001
[22] Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033
[23] Mughabghab S F 2006 Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Z= 1-100, Fifth Edition (Amsterdam: Elsevier), pp 154–249
[24] Soulié J P, Renaudin G, Cerný R, Yvon K 2002 J. Alloys Compd. 346 200
[25] Kumar R S, Cornelius A L 2005 Appl. Phys. Lett. 87 261903
[26] Abrahams S C, Kalnajs J 1954 J. Chem. Phys. 22 434
[27] Tomaszewski P E 1992 Phase Transit. 38 127
[28] Miwa K, Ohba N, Towata S, Nakamori Y, Orimo S 2004 Phys. Rev. B 69 245120
[29] Araújo C M, Ahuja R, Talyzin A V, Sundqvist B 2005 Phys. Rev. B 72 054125
[30] Wu D H, Wang H C, Shao L, Wei L T, Tang B Y 2015 Chem. Phys. Lett. 620 88
[31] Wang X H, Zheng P, Liu R, Yang X F, Yang J 2011 Nucl. Tech. 34 750. (in Chinese) [王新华, 郑普, 刘荣, 杨小飞, 阳剑 2011 核技术 34 750]
计量
- 文章访问数: 18
- PDF下载量: 0
- 被引次数: 0








下载: