搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函的镁-铝合金高压结构与电子性质理论研究

李津龙 王丹 王豪 张雷雷 耿华运

引用本文:
Citation:

基于密度泛函的镁-铝合金高压结构与电子性质理论研究

李津龙, 王丹, 王豪, 张雷雷, 耿华运

Theoretical study on high-pressure structures and electronic properties of Mg-Al alloys based on density functional theory

LI Jinlong, WANG Dan, WANG Hao, ZHANG Leilei, GENG Huayun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 元素镁和铝是地壳中丰度较高且被广泛应用于工业工程中的金属材料, 其在高压下能以单质形式形成电子化合物, 导致丰富多彩的晶体结构和电子性质. 本研究采用第一性原理结构搜索方法系统地对0—500 GPa压力范围内镁铝合金的可能结构进行探索, 获得了8种可在不同压强范围下稳定存在的晶体结构和2种亚稳的富镁合金结构, 其中6种稳定结构具有电子化合物特征. 通过计算分析验证了电子化合物中间隙准原子对晶格振动特性的影响, 同时在富镁合金结构中发现铝原子具有独特的–5e超高氧化价态, 形成满壳层电子结构. 本研究丰富了镁铝合金的高压相图, 并为开发新型高压功能材料提供了理论参考.
    Magnesium and aluminum are abundant metals in the Earth's crust and widely utilized in industrial engineering. Under high pressure, these elements can form elemental compounds into single substances, resulting in a variety of crystal structures and electronic properties. In this study, the possible structures of magnesium-aluminum alloys are systematically investigated in a pressure range of 0–500 GPa by using the first-principles structure search method, with energy and electronic structure calculations conducted using the VASP package. Bader charge analysis elucidates atomic and interstitial quasi-atom (ISQ) valence states, while lattice dynamics are analyzed using the PHONOPY package via the small-displacement supercell approach. Eight stable phases(MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc, Mg3Al-Fm-3m) and two metastable phases (Mg4Al-I4/m, Mg5Al-P-3m1) are identified. The critical pressures and stable intervals for phase transitions are precisely determined. Notably, MgAl-Fd-3m, Mg2Al-P-3m1, Mg4Al-I4/m and Mg5Al-P-3m1 represent newly predicted structures. Analysis of electronic localization characteristics reveals that six stable structures(MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1 and Mg3Al-P63/mmc) exhibit electronic properties of electrides. The ISQs primarily originate from charge transfer of Mg atoms. In the metastable phase Mg4Al-I4/m, Al atoms are predicted to achieve an Al5–valence state, filling the p shell. This finding demonstrates that by adjusting the Mg/Al ratio and pressure conditions, a transition from traditional electrides to high negative valence states can be realized, offering new insights into the development of novel high-pressure functional materials. Furthermore, all Mg-Al compounds display metallic behaviors, with their stability attributed to Al-p-d orbital hybridization, which significantly contributes to the Al-3p/3d orbitals near the Fermi level. Additionally, LA-TA splitting is observed in MgAl3-Pm-3m, with a splitting value of 45.49 cm–1, confirming the unique regulatory effect of ISQs on lattice vibrational properties. These results elucidate the rich structural and electronic properties of magnesium-aluminum alloys as electrodes, offering deeper insights into their behavior under high pressure and inspiring further exploration of structural and property changes in high-pressure alloys composed of light metal elements and p-electron metals.
  • 图 1  MgmAln 体系在给定压强下的形成焓(热力学稳定的化合物用实心符号表示)

    Fig. 1.  Formation enthalpy of the MgmAln system at a given pressure. Thermodynamically stable compounds are indicated by solid symbols.

    图 2  MgmAln化合物的压力-组分相图(黑色斜线区域表明对应的相在该压强范围是亚稳态)

    Fig. 2.  Pressure-composition phase diagram of MgmAln compounds, with the black hatched line area indicating that the corresponding phase is metastable within this pressure range.

    图 3  (a) MgAl3P63/mmc相对于Pm-3m相在0—500 GPa范围内的焓差曲线; (b) MgAl的Pmmb相和Fd-3m相对于P4/mmm相在0—500 GPa范围内的焓差曲线; (c) Mg3Al的Fm-3m相对于P63/mmc相在0—500 GPa范围内的焓差曲线

    Fig. 3.  (a) Enthalpy difference curve of the P63/mmc phase of MgAl3 relative to the Pm-3m phase within the range of 0—500 GPa; (b) the enthalpy difference curves of the Pmmb phase and Fd-3m phase of MgAl relative to the P4/mmm phase within the range of 0—500 GPa; (c) the enthalpy difference curve of the Fm-3m phase of Mg3Al relative to the P63/mmc phase within the range of 0—500 GPa.

    图 4  稳定MgmAln化合物的晶体结构图(橙色和蓝色球分别代表Mg原子和Al原子) (a) MgAl3-Pm-3m在100 GPa的结构; (b) MgAl3-P63/mmc在200 GPa的结构; (c) MgAl-P4/mmm在40 GPa的结构; (d) MgAl-Pmmb在95 GPa的结构; (e) MgAl-Fd-3m在350 GPa的结构; (f) Mg2Al-P-3m1在500 GPa的结构; (g) Mg3Al-P63/mmc在50 GPa的结构; (h) Mg3Al-Fm-3m在350 GPa的结构

    Fig. 4.  Crystal structure of the predicted stable MgmAln compounds: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa; (e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al-P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa. Orange and blue spheres represent Mg and Al atoms, respectively.

    图 5  高压下MgmAln 结构的声子色散曲线 (a), (b) 在0 GPa和100 GPa下的MgAl3-Pm-3m结构; (c)—(e) 在100 GPa, 200 GPa 和250 GPa下的MgAl3-P63/mmc结构; (f), (g) 在0 GPa和40 GPa下的MgAl-P4/mmm结构; (h)—(j) 在50 GPa, 95 GPa和150 GPa下的MgAl-Pmmb结构; (k)—(m) 在150 GPa, 350 GPa和500 GPa下的MgAl-Fd-3m结构; (n), (o) 在55 GPa和500 GPa下的Mg2Al-P-3m1结构; (p), (q) 在0 GPa和50 GPa下的Mg3Al-P63/mmc结构; (r)—(t) 在60 GPa, 350 GPa和500 GPa下的Mg3Al-Fm-3m结构; (u), (v) 在0 GPa和500 GPa下的Mg4Al-I4/m结构; (w), (x) 在35 GPa和500 GPa下的Mg5Al-P-3m1结构

    Fig. 5.  Phonon dispersion curves of the predicted MgmAln structures under high pressure: (a), (b) MgAl3-Pm-3m at 0 GPa and 100 GPa; (c)–(e) MgAl3-P63/mmc at 100 GPa, 200 GPa and 250 GPa; (f), (g) MgAl-P4/mmm at 0 GPa and 40 GPa; (h)–(j) MgAl-Pmmb at 50 GPa, 95 GPa and 150 GPa; (k)–(m) MgAl-Fd-3m at 150 GPa, 350 GPa and 500 GPa; (n), (o) Mg2Al-P-3m1 at 55 GPa and 500 GPa; (p), (q) Mg3Al-P63/mmc at 0 GPa and 50 GPa; (r)–(t) Mg3Al-Fm-3m at 60 GPa, 350 GPa and 500 GPa; (u), (v) Mg4Al-I4/m at 0 GPa and 500 GPa; (w), (x) Mg5Al-P-3m1 at 35 GPa and 500 GPa.

    图 6  MgmAln化合物的原子间距离直方图 (a) 100 GPa的MgAl3-Pm-3m结构; (b) 200 GPa的MgAl3-P63/mmc结构; (c) 40 GPa的MgAl-P4/mmm结构; (d) 95 GPa的MgAl-Pmmb结构; (e) 350 GPa的MgAl-Fd-3m结构; (f) 500 GPa的Mg2Al-P-3m1结构; (g) 50 GPa的Mg3Al-P63/mmc结构; (h) 350 GPa的Mg3Al-Fm-3m结构

    Fig. 6.  Histograms of interatomic distances for MgmAln structures: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa;(e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al-P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa.

    图 7  稳定的MgmAln化合物的电子局域化函数(ELF)图 (a) 100 GPa的MgAl3-Pm-3m结构, ELF等值面为0.65; (b) 200 GPa的MgAl3-P63/mmc结构, 等值面为0.70; (c) 40 GPa的MgAl-P4/mmm结构, 等值面为0.70; (d) 95 GPa的MgAl-Pmmb结构, 等值面为0.70; (e) 350 GPa的MgAl-Fd-3m结构, 等值面为0.70; (f) 500 GPa的Mg2Al-P-3m1结构, 等值面为0.70; (g) 50 GPa的Mg3Al-P63/mmc结构, 等值面为0.60; (h) 350 GPa的Mg3Al-Fm-3m结构, 等值面为0.65. 橙色球和蓝色球分别代表Mg原子和Al原子, 粉色小球代表间隙准原子中心

    Fig. 7.  Electron localization function (ELF) isosurface of stable MgmAln compounds: (a) MgAl3-Pm-3m structure at 100 GPa, ELF isosurface is 0.65; (b) MgAl3-P63/mmc structure at 200 GPa, isosurface is 0.70; (c) MgAl-P4/mmm structure at 40 GPa, isosurface is 0.70; (d) MgAl-Pmmb structure at 95 GPa, isosurface is 0.70; (e) MgAl-Fd-3m structure at 350 GPa, isosurface is 0.70; (f) Mg2Al-P-3m1 structure at 500 GPa, isosurface is 0.70; (g) Mg3Al-P63/mmc structure at 50 GPa, isosurface is 0.60; (h) Mg3Al-Fm-3m structure at 350 GPa, isosurface is 0.65. Orange and blue spheres represent Mg and Al atoms respectively, and pink small spheres represent the center of interstitial quasiatoms.

    图 8  100 GPa压力下MgAl3-Pm-3m结构的声子色散曲线, 图中蓝色点线是不考虑间隙电子影响的结果, 红色点划线是考虑了Bader电荷近似作为原子/ISQ有效电荷引起的库仑长程相互作用导致的LA-TA劈裂结果

    Fig. 8.  Phonon dispersion curves of the MgAl3-Pm-3m structure at 100 GPa. The blue dotted line in the figure represents the results without considering the influence of interstitial electrons, while the red dashed line shows the LA-TA splitting induced by the long-range interaction of approximating Bader charges of atom/ISQ.

    图 9  稳定的MgmAln化合物的电子投影态密度(PDOS)图 (a) 100 GPa的 MgAl3-Pm-3m结构; (b) 200 GPa的MgAl3-P63/mmc结构; (c) 40 GPa的 MgAl-P4/mmm结构; (d) 95 GPa的 MgAl-Pmmb结构; (e) 350 GPa的MgAl-Fd-3m结构; (f) 500 GPa的 Mg2Al- P-3m1结构; (g) 50 GPa的Mg3Al-P63/mmc结构; (h) 350 GPa的 Mg3Al-Fm-3m结构

    Fig. 9.  Electronic projected density of states (PDOS) diagrams of stable MgmAln compounds: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa; (e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al-P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa.

    图 10  稳定的 MgmAln化合物的能带图 (a) 100 GPa的MgAl3-Pm-3m结构; (b) 200 GPa的MgAl3-P63/mmc结构; (c) 40 GPa的MgAl-P4/mmm结构; (d) 95 GPa的MgAl-Pmmb结构; (e) 350 GPa的MgAl-Fd-3m结构; (f) 500 GPa的Mg2Al-P-3m1结构; (g) 50 GPa的Mg3Al-P63/mmc结构; (h) 350 GPa的Mg3Al-Fm-3m结构

    Fig. 10.  Band structure of stable MgmAln compounds: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa; (e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al- P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa.

    表 1  给定压强下 MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc和Mg3Al-Fm-3m中Mg, Al原子的价态、间隙准原子的电荷量(e/atom)和总的局域电荷量(e/cell)

    Table 1.  Valence state of Mg and Al atoms and the charge quantity per site (e/atom) of interstitial quasiatom, as well as the total local charge quantity per cell (e/cell) in MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc and Mg3Al-Fm-3m at given pressure.

    PhaseMg/atomAl/atomISQ/(e·site–1)ISQ/(e·site–1)
    Pm-3m MgAl3
    (100 GPa)
    +1.48+1.070.394.68
    P63/mmc MgAl3
    (200 GPa)
    +1.45+1.65ISQ1: 1.69; ISQ2: 1.57;
    ISQ3: 1.60; ISQ4: 1.56
    12.81
    P4/mmm MgAl
    (40 GPa)
    +1.47–1.47
    Pmmb MgAl
    (95 GPa)
    +1.44–0.40ISQ1: 0.53; ISQ2: 0.512.09
    Fd-3m MgAl
    (350 GPa)
    +1.36+1.531.4423.07
    P-3m1 Mg2Al
    (500 GPa)
    +1.32+0.70ISQ1: 0.35; ISQ2: 0.263.33
    P63/mmc Mg3Al
    (50 GPa)
    +1.37–3.960.150.30
    Fm-3m Mg3Al
    (350 GPa)
    +1.31–3.95
    I4/m Mg4Al
    (300 GPa)
    +1.23–4.91
    I4/m Mg4Al
    (350 GPa)
    +1.23–1.760.796.32
    下载: 导出CSV

    表 A1  MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc, Mg3Al-Fm-3m, Mg4Al-I4/m和Mg5Al-P-3m1在给定压强下的晶格参数和原子位置

    Table A1.  Lattice parameters and atomic coordinates of MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc, Mg3Al-Fm-3m, Mg4Al-I4/m and Mg5Al-P-3m1 at given pressure.

    Phase Lattice
    parameters/Å
    Atom Site Atomic coordinates
    Pm-3m MgAl3
    (100 GPa)
    a = b = c = 3.4807,
    α = β = γ = 90°
    Mg 1a (0.00000 0.00000 0.00000)
    Al 3c (0.50000 0.50000 0.00000)
    P63/mmc MgAl3
    (200 GPa)
    a = b = 4.6192,
    c = 3.7511,
    α = β = 90°,
    γ = 120°
    Mg 2d (0.33333 0.66667 0.75000)
    Al 6h (0.16575 0.33150 0.25000)
    P4/mmm MgAl
    (40 GPa)
    a = b = 2.6468,
    c = 3.8386,
    α = β = γ = 90°
    Mg 1d (0.50000 0.50000 0.50000)
    Al 1a (0.00000 0.00000 0.00000)
    Pmmb MgAl
    (95 GPa)
    a = 4.0475, b = 2.4798, c = 4.3490,
    α = β = γ = 90°
    Mg 2f (0.25000 0.50000 0.33732)
    Al 2e (0.25000 0.00000 0.83940)
    Fd-3m MgAl
    (350 GPa)
    a = b = c = 4.8837,
    α = β = γ = 90°
    Mg 8a (0.50000 0.50000 0.00000)
    Al 8b (0.50000 0.00000 0.00000)
    P-3m1 Mg2Al
    (500 GPa)
    a = b = 3.3248,
    c = 2.0093,
    α = β = 90°,
    γ=120°
    Mg 2d (0.33333 0.66667 0.49763)
    Al 1a (0.00000 0.00000 0.00000)
    P63/mmc Mg3Al
    (50 GPa)
    a = b = 5.3284,
    c = 4.3022,
    α = β = 90°,
    γ = 120°
    Mg 6h (0.16784 0.83216 0.25000)
    Al 2d (0.66667 0.33333 0.25000)
    Fm-3m Mg3Al
    (350 GPa)
    a = b = c = 4.8981,
    α = β = γ = 90°
    Mg 4b (0.50000 0.50000 0.50000)
    8c (0.75000 0.75000 0.75000)
    Al 4a (0.00000 0.00000 0.00000)
    I4/m Mg4Al
    (500 GPa)
    a = b = 4.4643,
    c = 3.2322,
    α = β = γ = 90°
    Mg 8h (0.09518 0.70193 0.50000)
    Al 2a (0.00000 0.00000 0.00000)
    P-3m1 Mg5Al
    (500 GPa)
    a = b = 3.3132,
    c = 4.0870,
    α = β = 90°,
    γ = 120°
    Mg 2d (0.66667 0.33333 0.31434)
    2d (0.66667 0.33333 0.81145)
    1a (0.00000 0.00000 0.00000)
    Al 1b (0.00000 0.00000 0.50000)
    下载: 导出CSV
    Baidu
  • [1]

    Grochala W, Hoffmann R, Feng J, Ashcroft N W 2007 Angew. Chem. Int. Ed. 46 3620Google Scholar

    [2]

    Pickard C J, Needs R J 2011 Phys. Rev. Lett. 107 87201Google Scholar

    [3]

    Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L 2017 Nat. Chem. 9 440Google Scholar

    [4]

    田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰 2022 71 017102Google Scholar

    Tian C, Lan J X, Wang C L, Zhai P F, Liu J 2022 Acta Phys. Sin. 71 017102Google Scholar

    [5]

    熊浩智, 王云江 2025 74 086101Google Scholar

    Xiong H Z, Wang Y J 2025 Acta Phys. Sin. 74 086101Google Scholar

    [6]

    Miao M, Hoffmann R 2015 J. Am. Chem. Soc. 137 3631Google Scholar

    [7]

    Dye J L 1990 Science 247 663Google Scholar

    [8]

    Dye J L 2003 Science 301 607Google Scholar

    [9]

    Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685Google Scholar

    [10]

    李凡, 张忻, 张久兴 2019 68 206801Google Scholar

    Li F, Zhang X, Zhang J X 2019 Acta Phys. Sin. 68 206801Google Scholar

    [11]

    Menamparambath M M, Park J H, Yoo H S, Patole S P, Yoo J B, Kim S W, Baik S 2014 Nanoscale 6 8844Google Scholar

    [12]

    He H M, Li Y, Yang H, Yu D, Li S Y, Wu D, Hou J H, Zhong R L, Zhou Z J, Gu F L 2017 J. Phys. Chem. C 121 958Google Scholar

    [13]

    Guo Z X, Bergara A, Zhang X H, Li X, Ding S C, Yang G C 2024 Phys. Rev. B 109 134505Google Scholar

    [14]

    Wei J H, Zhong T, Sun J C, Liu H Y, Zhu L, Zhang S T 2025 Phys. Rev. B 111 184508Google Scholar

    [15]

    Wang C, Liu P Y, Liu Z, Cui T 2024 Results Phys. 60 107703Google Scholar

    [16]

    Wang D, Song H X, Hao Q D, Yang G F, Wang H, Zhang L L, Chen Y, Chen X R, Geng H Y 2024 J. Phys. Chem. C 129 689

    [17]

    Hu J P, Xu B, Yang S Y, Guan S, Ouyang C Y, Yao Y G 2015 ACS Appl. Mater. Interfaces 7 24016Google Scholar

    [18]

    Chen G H, Bai Y, Li H, Li Y, Wang Z H, Ni Q, Liu L, Wu F, Yao Y G, Wu C 2017 ACS Appl. Mater. Interfaces 9 6666Google Scholar

    [19]

    Druffel D L, Pawlik J T, Sundberg J D, McRae L M, Lanetti M G, Warren S C 2020 J. Phys. Chem. Lett. 11 9210Google Scholar

    [20]

    Ye T N, Li J, Kitano M, Hosono H 2017 Green Chem. 19 749Google Scholar

    [21]

    Toda Y, Hirayama H, Kuganathan N, Torrisi A, Sushko P V, Hosono H 2013 Nat. Commun. 4 2378Google Scholar

    [22]

    Zhang X H, Yang G C 2020 J. Phys. Chem. Lett. 11 3841Google Scholar

    [23]

    Zhou J, Feng Y P, Shen L 2020 Phys. Rev. B 102 180407Google Scholar

    [24]

    Lee S Y, Hwang J Y, Park J, Nandadasa C N, Kim Y, Bang J, Lee K, Lee K H, Zhang Y, Ma Y 2020 Nat. Commun. 11 1526Google Scholar

    [25]

    Hirayama M, Matsuishi S, Hosono H, Murakami S 2018 Phys. Rev. X 8 031067

    [26]

    Hosono H, Kitano M 2021 Chem. Rev. 121 3121Google Scholar

    [27]

    Miao M S, Hoffmann R 2014 Acc. Chem. Res. 47 1311Google Scholar

    [28]

    Sui X L, Wang J F, Duan W H 2019 J. Phys. Chem. C 123 5003Google Scholar

    [29]

    Yan J Q, Ochi M, Cao H B, Saparov B, Cheng J G, Uwatoko Y, Arita R, Sales B C, Mandrus D G 2018 J. Phys. : Condens. Matter 30 135801Google Scholar

    [30]

    Lu Y F, Wang J J, Li J, Wu J Z, Kanno S, Tada T, Hosono H 2018 Phys. Rev. B 98 125128Google Scholar

    [31]

    Wang X M, Wang Y, Wang J J, Pan S N, Lu Q, Wang H T, Xing D Y, Sun J 2022 Phys. Rev. Lett. 129 246403Google Scholar

    [32]

    Nakashima P N, Smith A E, Etheridge J, Muddle B C 2011 Science 331 1583Google Scholar

    [33]

    Liu C, Nikolaev S A, Ren W, Burton L A 2020 J. Mater. Chem. C 8 10551Google Scholar

    [34]

    Pickard C J, Needs R J 2010 Nat. Mater. 9 624Google Scholar

    [35]

    Li P F, Gao G Y, Wang Y C, Ma Y M 2010 J. Phys. Chem. C 114 21745Google Scholar

    [36]

    Zhu Q, Oganov A R, Lyakhov A O 2013 Phys. Chem. Chem. Phys. 15 7696Google Scholar

    [37]

    Miao M S, Wang X L, Brgoch J, Spera F, Jackson M G, Kresse G, Lin H Q 2015 J. Am. Chem. Soc. 137 14122Google Scholar

    [38]

    Li C, Yang W G, Sheng H W 2022 Phys. Rev. Mater. 6 033601Google Scholar

    [39]

    Li C, Li W W, Zhang X L, Du L C, Sheng H W 2022 Phys. Chem. Chem. Phys. 24 12260Google Scholar

    [40]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [41]

    Polsin D N, Fratanduono D E, Rygg J R, Lazicki A, Smith R F, Eggert J H, Gregor M C, Henderson B H, Delettrez J A, Kraus R G 2017 Phys. Rev. Lett. 119 175702Google Scholar

    [42]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [43]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [44]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124

    [45]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [46]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [47]

    Kohn W, Sham L J 1965 Phys. Rev. 137 A1697Google Scholar

    [48]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [49]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [50]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [51]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [52]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [53]

    Yu M, Trinkle D R 2011 J. Chem. Phys. 134

    [54]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [55]

    Olijnyk H, Holzapfel W B 1985 Phys. Rev. B 31 4682Google Scholar

    [56]

    Akahama Y, Nishimura M, Kinoshita K, Kawamura H, Ohishi Y 2006 Phys. Rev. Lett. 96 045505Google Scholar

    [57]

    Tambe M J, Bonini N, Marzari N 2008 Phys. Rev. B 77 172102Google Scholar

    [58]

    Owen E A, Liu Y H 1947 Lond. Edinb. Dublin Philos. Mag. J. Sci. 38 354Google Scholar

    [59]

    Lyubimtsev A L, Baranov A I, Fischer A, Kloo L, Popovkin B A 2002 J. Alloys Compd. 340 167Google Scholar

    [60]

    Chang L-C 1951 Acta Cryst. Sect. A 4 320

    [61]

    Kuriyama K, Saito S, Iwamura K 1979 J. Phys. Chem. Solids 40 457Google Scholar

    [62]

    Williams A 1989 J. Phys. : Condens. Matter 1 2569Google Scholar

    [63]

    Zhang L L, Wu Q, Li S R, Sun Y, Yan X Z, Chen Y, Geng H Y 2021 ACS Appl. Mater. Interfaces 13 6130Google Scholar

    [64]

    Zhang L L, Geng H Y, Wu Q 2021 Matter Radiat. Extremes 6 038403Google Scholar

    [65]

    Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G 2020 Nat. Commun. 11 4004Google Scholar

  • [1] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{\boldsymbol n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性.  , doi: 10.7498/aps.70.20201351
    [2] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性.  , doi: 10.7498/aps.69.20191455
    [3] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , doi: 10.7498/aps.68.20181754
    [4] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性.  , doi: 10.7498/aps.67.20180808
    [5] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究.  , doi: 10.7498/aps.67.20180296
    [6] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , doi: 10.7498/aps.65.018201
    [7] 武红, 李峰. GeH/层间弱相互作用调控锗烯电子结构的机制.  , doi: 10.7498/aps.65.096801
    [8] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , doi: 10.7498/aps.62.036301
    [9] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究.  , doi: 10.7498/aps.62.103103
    [10] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究.  , doi: 10.7498/aps.61.246801
    [11] 陈军, 蒙大桥, 杜际广, 蒋刚, 高涛, 朱正和. 钚氧化物的分子结构和分子光谱研究.  , doi: 10.7498/aps.59.1658
    [12] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究.  , doi: 10.7498/aps.58.6956
    [13] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究.  , doi: 10.7498/aps.58.3112
    [14] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究.  , doi: 10.7498/aps.58.2675
    [15] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究.  , doi: 10.7498/aps.58.1863
    [16] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究.  , doi: 10.7498/aps.57.1592
    [17] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构.  , doi: 10.7498/aps.57.3684
    [18] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究.  , doi: 10.7498/aps.57.3690
    [19] 姚明珍, 梁玲, 顾牡, 段勇, 马晓辉. PbWO4晶体空位型缺陷电子结构的研究.  , doi: 10.7498/aps.51.125
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算.  , doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  233
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 修回日期:  2025-07-30
  • 上网日期:  2025-09-17

/

返回文章
返回
Baidu
map