搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函的镁-铝合金高压结构与电子性质理论研究

李津龙 王丹 王豪 张雷雷 耿华运

引用本文:
Citation:

基于密度泛函的镁-铝合金高压结构与电子性质理论研究

李津龙, 王丹, 王豪, 张雷雷, 耿华运

Theoretical study on high-pressure structures and electronic properties of Mg-Al alloys based on density functional theory

LI Jinlong, WANG Dan, WANG Hao, ZHANG Leilei, GENG Huayun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 元素镁和铝是地壳中丰度较高且被广泛应用于工业工程中的金属材料,它们在高压下能以单质形式形成电子化合物,导致丰富多彩的晶体结构和电子性质。本研究使用第一性原理结构搜索方法系统地对0-500GP压力范围内镁铝合金的可能结构进行了探索,获得了8种可在不同压强范围下稳定存在的晶体结构和2种亚稳的富镁合金结构,其中6种稳定结构具有电子化合物特征。通过计算分析验证了电子化合物中间隙准原子对晶格振动特性的影响,同时在富镁合金结构中发现铝原子具有独特的-5e超高氧化价态,形成满壳层电子结构。本研究丰富了镁铝合金的高压相图,并为开发新型高压功能材料提供了理论参考。
    Magnesium and aluminum are abundant metals in the Earth's crust and are widely utilized in industrial engineering. Under high pressure, these elements can form elemental compounds as single substances, leading to a variety of crystal structures and electronic properties. This study systematically investigated the possible structures of magnesium-aluminum alloys within the pressure range of 0-500 GPa using the first-principles structure search method, with energy and electronic structure calculations conducted using the VASP package. Bader charge analysis characterized atomic and interstitial quasiatom (ISQ) valence states, while lattice dynamics were analyzed using the PHONOPY package via the small-displacement supercell approach. Eight stable phases (MgAl3-Pm-3m、 MgAl3-P63/mmc、 MgAl-P4/mmm、 MgAl-Pmmb、 MgAl-Fd-3m、 Mg2Al-P-3m1、 Mg3Al-P63/mmc、 Mg3Al-Fm-3m) and two metastable phases (Mg4Al-I4/m、 Mg5Al-P-3m1) were identified. The critical pressures and stable intervals for phase transitions were precisely determined. Notably, MgAl-Fd-3m、 Mg2Al-P-3m1、 Mg4Al-I4/m and Mg5Al-P-3m1 represent newly predicted structures. Analysis of electronic localization characteristics revealed that six stable structures (MgAl3-Pm-3m 、 MgAl3-P63/mmc 、 MgAl-Pmmb 、 MgAl-Fd-3m 、 Mg2Al-P-3m1 and Mg3Al-P63/mmc) exhibit electronic properties of electrides. Interstitial quasi-atoms (ISQs) primarily originate from charge transfer of Mg atoms. In the metastable phase Mg4Al-I4/m, it was predicted that Al atoms achieve an Al5- valence state, filling the p shell. This finding demonstrates that by adjusting the Mg/Al ratio and pressure conditions, a transition from traditional electrides to high negative valence states can be realized, offering new insights into the development of novel high-pressure functional materials. Furthermore, all Mg-Al compounds display metallic behavior, with their stability attributed to Al-p-d orbital hybridization, which significantly contributes to the Al-3p/3d orbitals near the Fermi level. Additionally, LA-TA splitting was observed in MgAl3-Pm-3m, with a splitting value of 45.49 cm-1, confirming the unique regulatory effect of ISQs on lattice vibrational properties. These results elucidate the rich structural and electronic properties of magnesium-aluminum alloys as electrides, providing deeper insights into their behavior under high pressure and inspiring further exploration of structural and property changes in high-pressure alloys composed of light metal elements and p-electron metals.
  • [1]

    Grochala W, Hoffmann R, Feng J, Ashcroft N W 2007 Angew. Chem. Int. Ed. 46 3620

    [2]

    Pickard C J, Needs R J 2011 Phys. Rev. Lett. 107 87201

    [3]

    Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G-R, Zhu Q, Gatti C, Deringer V L 2017 Nat. Chem. 9 440

    [4]

    Tian C, Lan J-X, Wang C-L, Zhai P-F, Liu J 2022 Acta Phys. Sin. 71 017102 (in Chinese) [田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰 2022 71 017102]

    [5]

    Xiong H Z, Wang Y J 2025 Acta Phys. Sin. 74 086101 (in Chinese) [熊浩智, 王云江 2025 74 086101]

    [6]

    Miao M, Hoffmann R 2015 J. Am. Chem. Soc. 137 3631

    [7]

    Dye J L 1990 Science 247 663

    [8]

    Dye J L 2003 Science 301 607

    [9]

    Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685

    [10]

    Li F, Zhang X, Zhang J-X 2019 Acta Phys. Sin. 68 206801 (in Chinese) [李凡, 张忻, 张久兴 2019 68 206801]

    [11]

    Menamparambath M M, Park J-H, Yoo H-S, Patole S P, Yoo J-B, Kim S W, Baik S 2014 Nanoscale 6 8844

    [12]

    He H-M, Li Y, Yang H, Yu D, Li S-Y, Wu D, Hou J-H, Zhong R-L, Zhou Z-J, Gu F-L 2017 J. Phys. Chem. C 121 958

    [13]

    Guo Z, Bergara A, Zhang X, Li X, Ding S, Yang G 2024 Phys. Rev. B 109 134505

    [14]

    Wei J, Zhong T, Sun J, Liu H, Zhu L, Zhang S 2025 Phys. Rev. B 111 184508

    [15]

    Wang C, Liu P, Liu Z, Cui T 2024 Results Phys. 60 107703

    [16]

    Wang D, Song H, Hao Q, Yang G, Wang H, Zhang L, Chen Y, Chen X, Geng H 2024 J. Phys. Chem. C 129 689

    [17]

    Hu J, Xu B, Yang S A, Guan S, Ouyang C, Yao Y 2015 ACS Appl. Mater. Interfaces 7 24016

    [18]

    Chen G, Bai Y, Li H, Li Y, Wang Z, Ni Q, Liu L, Wu F, Yao Y, Wu C 2017 ACS Appl. Mater. Interfaces 9 6666

    [19]

    Druffel D L, Pawlik J T, Sundberg J D, McRae L M, Lanetti M G, Warren S C 2020 J. Phys. Chem. Lett. 11 9210

    [20]

    Ye T-N, Li J, Kitano M, Hosono H 2017 Green Chem. 19 749

    [21]

    Toda Y, Hirayama H, Kuganathan N, Torrisi A, Sushko P V, Hosono H 2013 Nat. Commun. 4 2378

    [22]

    Zhang X, Yang G 2020 J. Phys. Chem. Lett. 11 3841

    [23]

    Zhou J, Feng Y P, Shen L 2020 Phys. Rev. B 102 180407

    [24]

    Lee S Y, Hwang J-Y, Park J, Nandadasa C N, Kim Y, Bang J, Lee K, Lee K H, Zhang Y, Ma Y 2020 Nat. Commun. 11 1526

    [25]

    Hirayama M, Matsuishi S, Hosono H, Murakami S 2018 Phys. Rev. X 8 031067

    [26]

    Hosono H, Kitano M 2021 Chem. Rev. 121 3121

    [27]

    Miao M-S, Hoffmann R 2014 Acc. Chem. Res. 47 1311

    [28]

    Sui X, Wang J, Duan W 2019 J. Phys. Chem. C 123 5003

    [29]

    Yan J Q, Ochi M, Cao H B, Saparov B, Cheng J G, Uwatoko Y, Arita R, Sales B C, Mandrus D G 2018 J. Phys.: Condens. Matter 30 135801

    [30]

    Lu Y, Wang J, Li J, Wu J, Kanno S, Tada T, Hosono H 2018 Phys. Rev. B 98 125128

    [31]

    Wang X, Wang Y, Wang J, Pan S, Lu Q, Wang H-T, Xing D, Sun J 2022 Phys. Rev. Lett. 129 246403

    [32]

    Nakashima P N, Smith A E, Etheridge J, Muddle B C 2011 Science 331 1583

    [33]

    Liu C, Nikolaev S A, Ren W, Burton L A 2020 J. Mater. Chem. C 8 10551

    [34]

    Pickard C J, Needs R J 2010 Nat. Mater. 9 624

    [35]

    Li P, Gao G, Wang Y, Ma Y 2010 J. Phys. Chem. C 114 21745

    [36]

    Zhu Q, Oganov A R, Lyakhov A O 2013 Phys. Chem. Chem. Phys. 15 7696

    [37]

    Miao M, Wang X, Brgoch J, Spera F, Jackson M G, Kresse G, Lin H 2015 J. Am. Chem. Soc. 137 14122

    [38]

    Li C, Yang W, Sheng H W 2022 Phys. Rev. Mater. 6 033601

    [39]

    Li C, Li W, Zhang X, Du L, Sheng H W 2022 Phys. Chem. Chem. Phys. 24 12260

    [40]

    Mao H-K, Chen X-J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [41]

    Polsin D N, Fratanduono D E, Rygg J R, Lazicki A, Smith R F, Eggert J H, Gregor M C, Henderson B H, Delettrez J A, Kraus R G 2017 Phys. Rev. Lett. 119 175702

    [42]

    Wang Y, Lv J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063

    [43]

    Wang Y, Lv J, Zhu L, Ma Y 2010 Phys. Rev. B—Condens. Matter Mater. Phys. 82 094116

    [44]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124

    [45]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227

    [46]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172

    [47]

    Kohn W, Sham L J 1965 Phys. Rev. 137 A1697

    [48]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [49]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [50]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [51]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [52]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [53]

    Yu M, Trinkle D R 2011 J. Chem. Phys. 134

    [54]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1

    [55]

    Olijnyk H, Holzapfel W B 1985 Phys. Rev. B 31 4682

    [56]

    Akahama Y, Nishimura M, Kinoshita K, Kawamura H, Ohishi Y 2006 Phys. Rev. Lett. 96 045505

    [57]

    Tambe M J, Bonini N, Marzari N 2008 Phys. Rev. B—Condens. Matter Mater. Phys. 77 172102

    [58]

    Owen E A, Liu Y H 1947 Lond. Edinb. Dublin Philos. Mag. J. Sci. 38 354

    [59]

    Lyubimtsev A L, Baranov A I, Fischer A, Kloo L, Popovkin B A 2002 J. Alloys Compd. 340 167

    [60]

    Chang L-C 1951 Acta Cryst. Sect. A 4 320

    [61]

    Kuriyama K, Saito S, Iwamura K 1979 J. Phys. Chem. Solids 40 457

    [62]

    Williams A 1989 J. Phys.: Condens. Matter 1 2569

    [63]

    Zhang L, Wu Q, Li S, Sun Y, Yan X, Chen Y, Geng H Y 2021 ACS Appl. Mater. Interfaces 13 6130

    [64]

    Zhang L, Geng H Y, Wu Q 2021 Matter Radiat. Extremes 6 038403

    [65]

    Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G 2020 Nat. Commun. 11 4004

  • [1] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{\boldsymbol n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性.  , doi: 10.7498/aps.70.20201351
    [2] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性.  , doi: 10.7498/aps.69.20191455
    [3] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , doi: 10.7498/aps.68.20181754
    [4] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性.  , doi: 10.7498/aps.67.20180808
    [5] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究.  , doi: 10.7498/aps.67.20180296
    [6] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , doi: 10.7498/aps.65.018201
    [7] 武红, 李峰. GeH/层间弱相互作用调控锗烯电子结构的机制.  , doi: 10.7498/aps.65.096801
    [8] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , doi: 10.7498/aps.62.036301
    [9] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究.  , doi: 10.7498/aps.62.103103
    [10] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究.  , doi: 10.7498/aps.61.246801
    [11] 陈军, 蒙大桥, 杜际广, 蒋刚, 高涛, 朱正和. 钚氧化物的分子结构和分子光谱研究.  , doi: 10.7498/aps.59.1658
    [12] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究.  , doi: 10.7498/aps.58.6956
    [13] 杨剑, 王倪颖, 朱冬玖, 陈宣, 邓开明, 肖传云. MPb10(M=Ti,V,Cr,Cu,Pd)几何结构和磁性的密度泛函计算研究.  , doi: 10.7498/aps.58.3112
    [14] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究.  , doi: 10.7498/aps.58.2675
    [15] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究.  , doi: 10.7498/aps.58.1863
    [16] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究.  , doi: 10.7498/aps.57.1592
    [17] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构.  , doi: 10.7498/aps.57.3684
    [18] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究.  , doi: 10.7498/aps.57.3690
    [19] 姚明珍, 梁玲, 顾牡, 段勇, 马晓辉. PbWO4晶体空位型缺陷电子结构的研究.  , doi: 10.7498/aps.51.125
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算.  , doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-17

/

返回文章
返回
Baidu
map