搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢中多组分V1–xFexC碳化物结构和物性的第一性原理研究*

张东 孙宜华 尹朝朝

引用本文:
Citation:

钢中多组分V1–xFexC碳化物结构和物性的第一性原理研究*

张东, 孙宜华, 尹朝朝

First-principles study on structures and physical properties of multicomponent V1–x FeC carbides in steel*

ZHANG Dong, SUN Yihua, YIN Chaochao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 钒碳化物通常作为金属材料的增强相, 其弹性和延展-脆性特性对于力学性能至关重要. 本研究基于特殊准随机结构(SQS)方法和第一性原理计算系统探讨了多组分V1–xFexC系碳化物的稳定性、电子结构、机械性能和热性质随元素Fe含量变化的规律. 研究结果表明, 5种组分(V0.125Fe0.875C, V0.25Fe0.75C, V0.5Fe0.5C, V0.75Fe0.25C和V0.875Fe0.125C)随着元素Fe含量的减小稳定性提高, V1–xFexC系碳化物键合类型以共价键、金属键和离子键的混合特征为主. 相较于V1–xFexC系其他碳化物, V0.875Fe0.125C由于具有高的共价键强度, 因此表现出高的弹性模量和硬度, 元素Fe的掺杂引入显著影响V1–xFexC碳化物的晶格振动模式和电子结构, V0.875Fe0.125C碳化物较高的德拜温度, 同样印证了其高温下优异的机械强度. 此外, 热导率的计算不仅指导V1–xFexC系碳化物的实验选择, 同时为开发高性能耐高温涂层提供重要的理论支持.
    Vanadium carbides commonly serve as strengthening phases in metallic materials, where their elastic and ductile-brittle characteristics are critical for mechanical performance. This work systematically investigates the structural stability, electronic properties, mechanical behaviors, and thermal characteristics of multi-component V1–xFexC carbides by using first-principles calculations, aiming to elucidate the influence of Fe content on their physical properties and provide a theoretical basis for the design and application of carbides in high-performance steels. The calculations are performed using the Vienna ab initio simulation package (VASP) based on density functional theory (DFT). Special quasirandom structures (SQS) are employed to construct five carbide models with varying Fe/V ratios (from V0.125Fe0.875C to V0.875Fe0.125C). Key parameters including formation enthalpy, electronic density of states, elastic constants, Debye temperature, and thermal conductivity are computed. The results indicate that as the Fe content decreases, the formation enthalpy shifts from positive to negative, reflecting a significant improvement in thermodynamic stability. Electronic structure analyses reveal metallic behavior of all compositions, with stronger covalent bonding in V-C than that in Fe–C. The V0.875Fe0.125C carbide exhibits the highest elastic modulus (C11 = 615.80 GPa) and Vickers hardness (21.06 GPa), which is attributed to its strong covalent interactions, though it also shows increased brittleness. The Debye temperature rises with the decrease of Fe content, further confirming superior mechanical strength at elevated temperatures. Calculations of the thermal conductivity for V0.875Fe0.125C yield values of 9.427 W·m1·K1 at 300 K and 2.357 W·m1·K1 at 1300 K. Its minimum lattice thermal conductivity (2.001 W·m1·K1) is comparable to that of typical thermal barrier coating materials, demonstrating high potential for high-temperature thermal insulation. This study reveals the structure-property relationships in V1–xFexC carbides on an atomic scale, indicating that low-Fe compositions are advantageous for high-temperature and high-strength applications. These findings provide important theoretical support for the development of novel heat-resistant coatings and high-strength steels.
  • 图 1  试样钢微观组织以及定性表征元素分布 (a)微观组织形貌; (b)高角环形暗场像; (c) HRTEM-EDS能谱面扫和(d)线扫图

    Fig. 1.  Microstructure of sample steel and distribution of qualitatively characterised elements: (a) Microstructural morphology; (b) high-angle annular dark-field image; (c) HRTEM-EDS energy spectrum area scan and (d) line scan image.

    图 2  V1–xFexC碳化物晶体结构 (a) VC; (b) V0.125Fe0.875C; (c) V0.25Fe0.75C; (d) V0.5Fe0.5C; (e) V0.75Fe0.25C; (f) V0.875Fe0.125C

    Fig. 2.  Crystal structure of V1–xFexC carbides: (a) VC; (b) V0.125Fe0.875C; (c) V0.25Fe0.75C; (d) V0.5Fe0.5C; (e) V0.75Fe0.25C; (f) V0.875Fe0.125C

    图 3  V1–xFexC碳化物的TDOS和PDOS (a) V0.125Fe0.875C; (b) V0.25Fe0.75C; (c) V0.5Fe0.5C; (d) V0.75Fe0.25C; (e) V0.875Fe0.125C

    Fig. 3.  TDOS and PDOS of V1–xFexC carbides (a) V0.125Fe0.875C; (b) V0.25Fe0.75C; (c) V0.5Fe0.5C; (d) V0.75Fe0.25C and (e) V0.875Fe0.125C

    图 4  V1–xFexC碳化物的声速(纵波vl、剪切波vs和平均声速vm )以及德拜温度($ \theta_{\text{D}} $)

    Fig. 4.  Calculated sound velocities (long wave vl, shear wave vs, and average sound velocity vm), and Debye temperature ($ \theta_{\text{D}} $) of V1–xFexC carbides.

    表 1  X射线能谱分析下的碳化物元素含量

    Table 1.  Elemental content of carbides after energy-dispersive X-ray spectroscopy.

    元素原子百分比/%质量分数/%
    C4.471.04
    Fe60.9666.11
    V27.3527.06
    Cr1.161.17
    Mn2.292.44
    Other elements3.772.18
    下载: 导出CSV

    表 2  V1–xFexC碳化物结构晶胞参数、形成焓(ΔHf)、金属性(fm)和Bader电荷

    Table 2.  Calculated structural cell parameters, formation energy (ΔHf), metallicness (fm) and Bader charge of V1–xFexC carbides

    a b c α/(°) β/(°) γ/(°) $ {{\Delta}{H}}_{\text{f}} $/( meV·atom–1) fm Bader
    V0.125Fe0.875C 8.061 8.065 8.063 90.08 89.99 89.95 0.443 0.548 0.840
    V0.25Fe0.75C 8.106 8.107 8.107 90.00 90.00 90.01 0.321 0.622 0.914
    V0.5Fe0.5C 8.203 8.188 8.195 90.00 90.00 90.00 0.042 0.844 1.052
    V0.75Fe0.25C 8.262 8.261 8.258 89.92 90.08 89.99 –0.230 0.971 1.146
    V0.875Fe0.125C 8.287 8.287 8.288 89.93 90.00 89.97 –0.439 1.19 1.213
    下载: 导出CSV

    表 3  V1–xFexC碳化物的弹性常数Cij、体积模量BH、剪切模量GH、杨氏模量E、泊松比ν、普格模量比BH/GH、硬度HV、断裂韧性KIC以及脆性指数$ {{M}}_{{x}} $

    Table 3.  Calculated elastic constants Cij, bulk modulus BH, shear modulus GH, Young's modulus E, Poisson's ratio ν, Pugh modulus ratio BH/GH, hardness HV, fracture toughness KIC, and brittleness index $ {{M}}_{{x}} $ of V1–xFexC carbides.

    碳化物C11/ GPaC12/ GPaC44/ GPaBH/ GPaGH/ GPaBH/GHEvHV/ GPaKIC/(MPa·m1/2)Mx/μm–1/2
    VC668.78138.75200.00315.43223.891.41543.150.34528.733.83
    648.24 [24]156.88 [24]209.99 [24]318[9]213[9]1.49[9]521[9]0.356[9]25.8[9]
    V0.125Fe0.875C552.84165.6875.32294.40110.792.657442.110.3338.492.5643.310
    V0.25Fe0.75C553.84155.4286.486288.10121.672.368319.960.31510.342.6653.878
    V0.5Fe0.5C563.87152.52113.41289.61144.232.008371.090.28614.062.9254.808
    V0.75Fe0.25C584.01148.76149.97293.96174.391.686436.800.25219.633.2546.034
    V0.875Fe0.125C615.80154.92162.02308.46186.601.650465.870.24821.063.4506.104
    下载: 导出CSV

    表 4  V1–xFexC碳化物沿[100], [110]和[111]方向的声速(m/s)

    Table 4.  The calculated sound velocities (m/s) along [100], [110], and [111] directions of V1–xFexC carbides.

    V0.125Fe0.875C V0.25Fe0.75C V0.5Fe0.5C V0.75Fe0.25C V0.875Fe0.125C
    [100] [100]vl 9003.42 9126.02 9446.38 9820.16 10182.71
    [010]vs1 3323.25 3606.30 4236.44 4976.31 5223.03
    [001]vs2 3323.25 3606.30 4236.44 4976.31 5223.03
    [110] [110]vl 7982.57 8144.52 8639.03 9233.81 9600.33
    $[1{\bar 1}0] $vs1 5327.68 5473.24 5705.14 5994.67 6229.07
    [001]vs2 3323.25 3606.30 4236.44 4976.31 5223.03
    [111] [111]vl 7611.92 7789.92 8352.592 9029.91 9398.19
    $ [11{\bar 2}] $vs1 4754.38 4930.12 5261.33 5675.55 5912.77
    $[11{\bar 2}] $vs2 4754.38 4930.12 5261.33 5675.55 5912.77
    下载: 导出CSV

    表 5  V1–xFexC碳化物的格林艾森参数γ, Aγ, δ, Mav, 晶格热导率kph以及最小晶格热导率kmin

    Table 5.  Calculated Grüneisen parameter γ, Aγ, δ, Mav, lattice thermal conductivity kph, and minimum lattice thermal conductivity kmin of V1–xFexC carbides.

    碳化物 γ Aγ(10–8) V δ Mav/
    (kg·mol–1)
    n kph(300)/
    (W·m–1·K–1)
    kph(1300)/
    (W·m¹·K–1)
    kmin/
    (W·m–1·K–1)
    V0.125Fe0.875C 1.996 3.039 524.18 2.016 22.413 64 2.139 0.535 1.536
    V0.25Fe0.75C 1.869 3.075 532.81 2.027 22.208 64 2.873 0.718 1.609
    V0.5Fe0.5C 1.692 3.132 550.38 2.049 21.800 64 4.729 1.182 1.752
    V0.75Fe0.25C 1.511 3.199 563.61 2.065 21.392 64 8.183 2.046 1.929
    V0.875Fe0.125C 1.492 3.206 569.15 2.072 21.188 64 9.427 2.357 2.001
    下载: 导出CSV
    Baidu
  • [1]

    Williams W S 1971 Prog. Solid State Chem. 6 57Google Scholar

    [2]

    Chen Y, Ye C, Chen X, Hu H 2024 Metals 14 175Google Scholar

    [3]

    康俊雨, 孙新军, 李昭东, 雍岐龙2015 钢铁 50 64

    Kang J L, Sun X J, Li Z D, Yong Q L 2015 50 64

    [4]

    Giang N A, Kuna M, Hütter G 2017 Theor. Appl. Fract. Mech. 92 89Google Scholar

    [5]

    Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401Google Scholar

    [6]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [7]

    Li X T, Zhang X Y, Qin J Q, Zhang S H, Ning J L, Jing R, Ma M Z, Liu R P 2014 J. Phys. Chem. Solids 75 1234Google Scholar

    [8]

    Zhang D, Tang X H, Humphries E, Li D Y 2023 Wear 523 204808Google Scholar

    [9]

    Sun C C, Zheng Y, Chen L L, Fang F, Zhou X F, Jiang J Q 2022 J. Alloys Compd. 895 162649Google Scholar

    [10]

    Zhang D, Hou T P, Quan X L, Zhou J, Yin C C, Lin H F, Lu Z H, Wu K M 2023 J. Mater. Res. Technol. 25 210Google Scholar

    [11]

    Kohn W, Becke A D, Parr R G 1996 J. Phys. Chem. 100 12974Google Scholar

    [12]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [13]

    van de Walle A, Tiwary P, de Jong M, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [14]

    Yu R, Zhu J, Ye H Q 2010 Comput. Phys. Commun. 181 671Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    Zhang D, Xiang R, Sun Y 2025 Mol. Phys. 123 e2379994Google Scholar

    [17]

    Kobayashi S, Ikuhara Y, Mizoguchi T 2018 Phy. Rev. B 98 134114Google Scholar

    [18]

    Mishra S, Ganguli B 2013 J. Solid State Chem. 200 279Google Scholar

    [19]

    Yamada K, Yosida K, Hanzawa K 1992 Prog. Theor. Phys. Suppl. 108 141Google Scholar

    [20]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [21]

    Guo L Q, Tang Y Q, Cui J, Li J Q, Yang J R, Li D Y 2021 Scr. Mater. 190 168Google Scholar

    [22]

    Wu Y, Ma L S, Zhou X L, Duan Y H, Shen L, Peng M J 2022 Int. J. Refract. Met. Hard Mater 109 105985Google Scholar

    [23]

    Zhang D, Hou T P, Liang X, Zheng P, Zheng Y H, Lin H F, Wu K M 2022 Vacuum 203 111175Google Scholar

    [24]

    Soni P, Pagare G, Sanyal S P 2021 J. Phys. Chem. Solids 72 810

    [25]

    Zuo L, Humbert M, Esling C 1992 J. Appl. Crystallogr. 25 751Google Scholar

    [26]

    Pugh S F 1954 Lond. Edinb. Phil. Mag. 45 823

    [27]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [28]

    Niu H, Niu S, Oganov A R 2019 J. Appl. Phys. 125 065105Google Scholar

    [29]

    Munro R G, Freiman S W, Baker T L 1998 Natl. Inst. Stand. Technol. 158 6153

    [30]

    王坤, 徐鹤嫣, 郑雄, 张海丰 2025 74 137101Google Scholar

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 137101Google Scholar

    [31]

    Yang J, Shahid M, Wan C, Jing F, Pan W 2017 J. Eur. Ceram. Soc. 37 689Google Scholar

    [32]

    Shindé S L, Goela J 2006 High Thermal Conductivity Materials (New York: Springer) pp111–123

    [33]

    Arab F, Sahraoui F A, Haddadi K, Bouhemadou A, Louail L 2016 Phase Transit. 89 480Google Scholar

    [34]

    Ahmed T, Roknuzzaman M, Sultana A, Biswas A, Safin A M, Saiduzzaman M, Hossain K M 2021 Mater. Today Commun. 29 102973Google Scholar

    [35]

    Vagge S T, Ghogare S 2022 Mater. Today 56 1201

    [36]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742Google Scholar

    [37]

    Feng J, Xiao B, Zhou R, Pan W, Clarke D R 2912 Acta Mater. 60 3380

  • [1] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究.  , doi: 10.7498/aps.71.20221847
    [2] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究.  , doi: 10.7498/aps.69.20200234
    [3] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究.  , doi: 10.7498/aps.65.157303
    [4] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.62.073101
    [5] 徐梅, 令狐荣锋, 李应发, 杨向东, 王晓璐. LiF分子在外电场中的物理性质研究.  , doi: 10.7498/aps.61.093102
    [6] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , doi: 10.7498/aps.61.036105
    [7] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , doi: 10.7498/aps.59.3414
    [8] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.59.4930
    [9] 丁航晨, 施思齐, 姜平, 唐为华. BiFeO3 结构性质与相转变的第一性原理研究.  , doi: 10.7498/aps.59.8789
    [10] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究.  , doi: 10.7498/aps.59.4919
    [11] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , doi: 10.7498/aps.59.3426
    [12] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , doi: 10.7498/aps.59.2051
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , doi: 10.7498/aps.59.515
    [14] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , doi: 10.7498/aps.58.1173
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , doi: 10.7498/aps.57.7794
    [16] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算.  , doi: 10.7498/aps.57.4428
    [17] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , doi: 10.7498/aps.57.1078
    [18] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , doi: 10.7498/aps.57.7827
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究.  , doi: 10.7498/aps.57.2368
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究.  , doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  290
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-08-27
  • 上网日期:  2025-09-24

/

返回文章
返回
Baidu
map