-
聚合物接枝纳米粒子的自组装在功能材料领域的应用越来越广泛. 然而, 目前对于不同自组装形貌结构的动态转变路径的分析仍存在不足, 这将导致在实验和工业生产中无法实现进一步的精确调节和定向设计. 本文通过构建聚合物接枝斑块化三分纳米颗粒的粗粒度模型, 采用耗散粒子动力学模拟方法, 研究了斑块性质、接枝链的长度、比例以及接枝密度等因素对聚合物接枝柔性斑块化纳米粒子自组装行为和结构的影响. 本文系统地探讨了这些因素对柔性斑块化纳米粒子自组装结构转变的影响和调控机制, 得到了枝状结构、柱状结构、双层膜结构等多种结构. 研究中所获得的柔性斑块化纳米粒子的自组装结构(例如双层膜结构)为新型药物载体的设计提供了潜在的应用基础. 通过精确调控体系的特定结构特征, 能够实现药物的高效包载以及靶向递送功能, 从而显著提升药物的生物利用度和治疗效果.The self-assembly of polymer grafted nanoparticles is more and more used in the field of functional materials. However, there is still a lack of analysis on the dynamic transformation paths of different self-assembly morphologies, which makes it impossible to achieve further precise regulation and targeted design in experiments and industrial production. In this work the effects of block property, grafted chain length, ratio and grafting density on the self-assembly behavior and structure of polymer grafted flexible blocky nanoparticles are investigated by dissipative particle dynamics simulation method through the construction of coarse-grained model of polymer grafted ternary nanoparticles. The influence and regulation mechanisms of these factors on the self-assembly structure transformation of flexible blocky nanoparticles are systematically studied, and a variety of structures such as dendritic structure, columnar structure, and bilayer membrane are obtained. The self-assembly structure of flexible blocky nanoparticles obtained in this work (such as bilayer membrane structure) provides a potential application basis for designing drug carriers. By precisely regulating the specific structural characteristics of the system, it is possible to achieve efficient loading of drugs and targeted delivery functions, thus significantly improving the bioavailability and effect of drugs.
-
Keywords:
- dissipative particle dynamics /
- self-assembly /
- dynamic pathways /
- flexible blocky nanoparticles
-
图 1 聚合物接枝纳米粒子模型. 白色链段和灰色链段分别代表亲水链段和疏水链段. 蓝色斑块和黄色斑块分别对应接枝亲水链段(C)和疏水链段(D)的接枝区域, 红色斑块对应未接枝区域
Fig. 1. Polymer grafted nanoparticle model. The white and grey segments represent hydrophilic and hydrophobic segments, respectively. The blue and yellow patches correspond to the grafting regions of the hydrophil (C) and hydrophobic (D) chains, respectively, and the red patch corresponds to the non-grafting region.
图 3 柔性斑块化纳米粒子自组装结构随作用力参数$ {\alpha _{{\text{AS}}}} $和链段长度$ L $变化的相图
代表枝状结构; 代表柱状结构; 代表双层膜结构Fig. 3. Phase diagram of flexible block copolymer self-assembly structures varying with the parameter of the driving force and the segment length L.
represents dendritic structure; represents a columnar structure; represents a double-layer membrane structure.图 4 (a) 不同接枝密度聚合物接枝纳米粒子自组装结构的相图, 其中
代表离散结构; 代表枝状结构; 代表柱状结构; 代表双层膜结构; (b) $ \varPhi = 0.65 $, $ {\alpha _{{\text{AS}}}} = 45 $时双层膜结构形貌图; (c) $ \varPhi = 1.18 $, $ {\alpha _{{\text{AS}}}} = 45 $时双层膜结构形貌图Fig. 4. (a) Phase diagram of self-assembled structure of grafted nanoparticles with different grafting density polymers.
represents discrete structure; represents tree-like structure; represents columnar structure; represents double-membrane structure. (b) Schematic diagram of the structure of the double-layer membrane when $ \varPhi = 0.65 $, $ {\alpha _{{\text{AS}}}} = 45 $. (c) Schematic diagram of the structure of the double- membrane when $ \varPhi = 1.18 $, $ {\alpha _{{\text{AS}}}} = 45 $. -
[1] Hoheisel T N, Hur K Wiesner U B 2015 Prog. Polym. Sci. 40 3
Google Scholar
[2] MaiY Y, Eisenberg A 2012 Acc. Chem. Res. 45 1657
Google Scholar
[3] Yu L X Z, Shi R, Qian H J, Lu Z Y 2019 Phys. Chem. Chem. Phys. 21 1417
Google Scholar
[4] Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R, Civale L 2009 Nat. Mater. 8 398
Google Scholar
[5] Yang J Y, Hu Y, Wang R, Xie D Q, 2017 Soft Matter 13 7840
Google Scholar
[6] Li Q, Wang L Y, Lin J P, Zhang L S 2019 Phys. Chem. Chem. Phys. 21 2651
Google Scholar
[7] Li Q, Wang L Y, Lin J P, Xu Z W 2020 J. Phys. Chem. B 124 4319
[8] Varanakkottu S N, Anyfantakis M, Morel M, Rudiuk S, Baigl D 2016 ACS Nano 16 644
[9] Zhang X, Yang H, Xiong H M, Li F Y, Xia Y Y 2006 J. Power Sources 160 1451
Google Scholar
[10] 韩旭, 薛斌, 曹毅, 王炜 2024 73 178103
Google Scholar
Han X, Xue B, Cao Y, Wang W 2024 Acta Phys. Sin. 73 178103
Google Scholar
[11] Song J B, Zhou J J, Duan H W 2012 J. Am. Chem. Soc. 134 13458
Google Scholar
[12] Wang Q, Li Z Y, Deng H Y, Chen Y G, Yan Y G 2023 Chem. Commun. 59 6726
Google Scholar
[13] Bansal A, Yang H C, Li C Z, Cho K W, Benicewicz B C, Schadler L S 2005 Nat. Mater. 4 693
Google Scholar
[14] Mackay M E, Tuteja A, Duxbury P M, Hawker C J, Van Horn B, Guan Z B, Chen G H, Krishnan R S 2006 Science 311 1740
Google Scholar
[15] 邵明旭, 林嘉平, 张良顺 2025 功能高分子学报 38 318
Shao M X, Lin J P, Zhang L S 2025 J. Funct. Polymers 38 318
[16] Krishnamoorti R 2007 MRS Bull. 32 341
Google Scholar
[17] Wang Y Y, Chen L Y, Lu J F, Pan J X, Zhang J J 2024 Langmuir 40 16595
Google Scholar
[18] 段芳莉, 王源 2014 63 136102
Google Scholar
Duan F L, Wang Y 2014 Acta Phys. Sin. 63 136102
Google Scholar
[19] Götz A W, Clark M A, Walker R C J 2014 J. Comput. Chem. 35 95
Google Scholar
[20] Pecina A, Lepšík M, Řezáč J, Brynda J, Mader P, Řezáčová P, Hobza P, Fanfrlík J 2013 J. Phys. Chem. B 117 16096
Google Scholar
[21] Li H, Zhao H T, Gao K M, Xue Z J, Chen Z B, Liu H 2024 Polym. Int. 74 152
[22] Li C H, Fu X W, Zhong W H, Liu J 2019 ACS Omega 4 10216
Google Scholar
[23] Pal S, Seidel C 2006 Macromol. Theory Simul. 15 668
Google Scholar
[24] Zhong C L, Liu D H 2007 Macromol. Theory Simul. 16 141
Google Scholar
[25] Song W Y, Liu H, He J W, Zhu J Z, He S Y, Liu D H, Liu H, Wang Y 2022 Polym. Int. 71 1330
Google Scholar
[26] Liu H, Zhao H Y, Florian Müller-Plathe, Qian H J, Sun Z Y, Lu Z Y 2018 Macromolecules 51 3758
Google Scholar
[27] Xing J Y, Lu Z Y, Liu H, Xue Y H 2018 Phys. Chem. Chem. Phys. 20 2066
Google Scholar
[28] Ma S Y, Hu Y, Wang R 2016 Macromolecules 49 3535
Google Scholar
[29] Ma S Y, Hu Y, Wang R 2016 Macromolecules 48 3112
[30] Estridge C E, Jayaraman A 2014 J. Chem. Phys. 140 144905
Google Scholar
[31] Hou G Y, Xia X Y, Liu J, Wang W C, Dong M J, Zhang L Q 2019 J. Phys. Chem. B 123 2157
Google Scholar
[32] Gupta S, Chokshi P 2020 J. Phys. Chem. B 124 11738
Google Scholar
[33] Moinuddin M, Tripathy M 2022 Macromolecules 55 9312
Google Scholar
[34] Sriramoju K K, Padmanabhan V 2016 Macromol. Theory Simul. 25 582
Google Scholar
[35] Li L, Han C, Xu D, Xing J Y, Xue Y H, Liu H 2018 Phys. Chem. Chem. Phys. 20 18400
Google Scholar
[36] Shi R, Qian H J, Lu Z Y 2017 Phys. Chem. Chem. Phys. 19 16524
Google Scholar
[37] Li J W, Wang J F, Yao Q, Yu K, Zhang J 2019 Nanoscale 11 7221
Google Scholar
[38] Xu J, Wang Y L, He X H 2015 Soft Matter 11 7433
Google Scholar
[39] Yan L T, Popp N, Ghosh S K, Böker A 2010 ACS Nano 4 913
Google Scholar
[40] Hoogerbrugge P J, Koelman J M V A 1992 Europhys. Lett. (EPL) 19 155
Google Scholar
[41] Park S, Lee J H, Cho M, Lee Y S, Chung H, Yang S 2024 Polym. Test. 137 108531
Google Scholar
[42] Zhang C, Wang Z G, Wang X H, Mou X K, Li S B 2024 Polymer 312 127664
Google Scholar
[43] Dong H, Zhou H, Li Y F, Li X B, Fan L L, Wen B Y, Zhao L 2024 Macromol. Theory Simul. 34 2400078
[44] Zhu B W, He Z J, Jiang G S, Ning F L 2024 Polymer 290 126602
Google Scholar
[45] Ma Y B, Yuan X Q, Jiang R F, Liao J H, Yu R T, Chen Y P, Liao L S 2023 Polymers 15 856
Google Scholar
[46] Wang F, Feng L K, Li Y D, Guo H X 2023 Chin. J. Polym. Sci. 41 1392
Google Scholar
[47] Groot R D, Warren P B 1997 J. Chem. Phys. 107 11
[48] Hu F F, Sun Y W, Zhu Y L, Huang Y N, Li Z W, Sun Z Y 2019 Nanoscale 11 17350
Google Scholar
[49] Li Z W, Zhu Y L, Lu Z Y, Sun Z Y 2016 Soft Matter 12 741
Google Scholar
[50] Zhu Y L, Pan D, Li Z W, Liu H, Qian H J, Zhao Y, Lu Z Y, Sun Z Y 2018 Mol. Phys. 116 1065
Google Scholar
[51] Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y 2013 J. Comput. Chem. 24 2197
[52] 王艳辉, 邹庆智, 朱有亮, 付翠柳, 黄以能, 李占伟, 孙昭艳 2019 高等学校化学学报 40 1037
Google Scholar
Wang Y H, Zhou Q Z, Zhu Y L, Fu C L, Huang Y N, Li Z W, Sun Z Y 2019 Chem. J. Chin. Univ. 40 1037
Google Scholar
计量
- 文章访问数: 313
- PDF下载量: 9
- 被引次数: 0