搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性斑块化纳米粒子在溶液中的自组装

孟国庆 陈力源 郭思航 潘俊星 王英英 张进军

引用本文:
Citation:

柔性斑块化纳米粒子在溶液中的自组装

孟国庆, 陈力源, 郭思航, 潘俊星, 王英英, 张进军

Self-assembly of polymer grafted nanoparticles in solution

MENG Guoqing, CHEN Liyuan, GUO Sihang, PAN Junxing, WANG Yingying, ZHANG Jinjun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 聚合物接枝纳米粒子的自组装在功能材料领域的应用越来越广泛. 然而, 目前对于不同自组装形貌结构的动态转变路径的分析仍存在不足, 这将导致在实验和工业生产中无法实现进一步的精确调节和定向设计. 本文通过构建聚合物接枝斑块化三分纳米颗粒的粗粒度模型, 采用耗散粒子动力学模拟方法, 研究了斑块性质、接枝链的长度、比例以及接枝密度等因素对聚合物接枝柔性斑块化纳米粒子自组装行为和结构的影响. 本文系统地探讨了这些因素对柔性斑块化纳米粒子自组装结构转变的影响和调控机制, 得到了枝状结构、柱状结构、双层膜结构等多种结构. 研究中所获得的柔性斑块化纳米粒子的自组装结构(例如双层膜结构)为新型药物载体的设计提供了潜在的应用基础. 通过精确调控体系的特定结构特征, 能够实现药物的高效包载以及靶向递送功能, 从而显著提升药物的生物利用度和治疗效果.
    The self-assembly of polymer grafted nanoparticles is more and more used in the field of functional materials. However, there is still a lack of analysis on the dynamic transformation paths of different self-assembly morphologies, which makes it impossible to achieve further precise regulation and targeted design in experiments and industrial production. In this work the effects of block property, grafted chain length, ratio and grafting density on the self-assembly behavior and structure of polymer grafted flexible blocky nanoparticles are investigated by dissipative particle dynamics simulation method through the construction of coarse-grained model of polymer grafted ternary nanoparticles. The influence and regulation mechanisms of these factors on the self-assembly structure transformation of flexible blocky nanoparticles are systematically studied, and a variety of structures such as dendritic structure, columnar structure, and bilayer membrane are obtained. The self-assembly structure of flexible blocky nanoparticles obtained in this work (such as bilayer membrane structure) provides a potential application basis for designing drug carriers. By precisely regulating the specific structural characteristics of the system, it is possible to achieve efficient loading of drugs and targeted delivery functions, thus significantly improving the bioavailability and effect of drugs.
  • 图 1  聚合物接枝纳米粒子模型. 白色链段和灰色链段分别代表亲水链段和疏水链段. 蓝色斑块和黄色斑块分别对应接枝亲水链段(C)和疏水链段(D)的接枝区域, 红色斑块对应未接枝区域

    Fig. 1.  Polymer grafted nanoparticle model. The white and grey segments represent hydrophilic and hydrophobic segments, respectively. The blue and yellow patches correspond to the grafting regions of the hydrophil (C) and hydrophobic (D) chains, respectively, and the red patch corresponds to the non-grafting region.

    图 2  柔性斑块化纳米粒子自组装过程中典型的结构 (a) 表示离散结构; (b) 表示枝状结构; (c) 表示柱状结构; (d) 表示双层膜结构

    Fig. 2.  Typical structures during self-assembly processes of flexible blocky nanoparticles: (a) Discrete structure; (b) dendritic structure; (c) columnar structure; (d) bilayer membrane structure.

    图 3  柔性斑块化纳米粒子自组装结构随作用力参数$ {\alpha _{{\text{AS}}}} $和链段长度$ L $变化的相图 代表枝状结构; 代表柱状结构; 代表双层膜结构

    Fig. 3.  Phase diagram of flexible block copolymer self-assembly structures varying with the parameter of the driving force and the segment length L. represents dendritic structure; represents a columnar structure; represents a double-layer membrane structure.

    图 4  (a) 不同接枝密度聚合物接枝纳米粒子自组装结构的相图, 其中代表离散结构; 代表枝状结构; 代表柱状结构; 代表双层膜结构; (b) $ \varPhi = 0.65 $, $ {\alpha _{{\text{AS}}}} = 45 $时双层膜结构形貌图; (c) $ \varPhi = 1.18 $, $ {\alpha _{{\text{AS}}}} = 45 $时双层膜结构形貌图

    Fig. 4.  (a) Phase diagram of self-assembled structure of grafted nanoparticles with different grafting density polymers. represents discrete structure; represents tree-like structure; represents columnar structure; represents double-membrane structure. (b) Schematic diagram of the structure of the double-layer membrane when $ \varPhi = 0.65 $, $ {\alpha _{{\text{AS}}}} = 45 $. (c) Schematic diagram of the structure of the double- membrane when $ \varPhi = 1.18 $, $ {\alpha _{{\text{AS}}}} = 45 $.

    图 5  疏水链段长度对聚合物形态影响的相位图, 其中代表枝状结构; 代表柱状结构; 代表双层膜结构

    Fig. 5.  Phase diagram of the influence of solvent-swollen segment length on polymer morphology. represents tree-like structure; represents columnar structure; represents double-membrane structure.

    图 6  双层膜结构平均膜厚度随疏溶剂链长的变化

    Fig. 6.  Variation of the average membrane thickness of the bilayer structure with the length of the hydrophobic solvent chain.

    图 7  中心粒子在体系内的径向分布函数g(r), 其中黑色线代表枝状结构, 红色线代表柱状结构, 蓝色线代表双层膜结构

    Fig. 7.  Rdial distribution function g(r) of the central particle in the system. Black line represents the dendritic structure; red line represents the columnar structure; blue line represents the bilayer membrane structure.

    图 8  枝状结构、柱状结构、双层膜结构自组装过程中的不同构象

    Fig. 8.  Different conformations of the self-assembly process of branched, columnar, and double-layer membrane structures.

    Baidu
  • [1]

    Hoheisel T N, Hur K Wiesner U B 2015 Prog. Polym. Sci. 40 3Google Scholar

    [2]

    MaiY Y, Eisenberg A 2012 Acc. Chem. Res. 45 1657Google Scholar

    [3]

    Yu L X Z, Shi R, Qian H J, Lu Z Y 2019 Phys. Chem. Chem. Phys. 21 1417Google Scholar

    [4]

    Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R, Civale L 2009 Nat. Mater. 8 398Google Scholar

    [5]

    Yang J Y, Hu Y, Wang R, Xie D Q, 2017 Soft Matter 13 7840Google Scholar

    [6]

    Li Q, Wang L Y, Lin J P, Zhang L S 2019 Phys. Chem. Chem. Phys. 21 2651Google Scholar

    [7]

    Li Q, Wang L Y, Lin J P, Xu Z W 2020 J. Phys. Chem. B 124 4319

    [8]

    Varanakkottu S N, Anyfantakis M, Morel M, Rudiuk S, Baigl D 2016 ACS Nano 16 644

    [9]

    Zhang X, Yang H, Xiong H M, Li F Y, Xia Y Y 2006 J. Power Sources 160 1451Google Scholar

    [10]

    韩旭, 薛斌, 曹毅, 王炜 2024 73 178103Google Scholar

    Han X, Xue B, Cao Y, Wang W 2024 Acta Phys. Sin. 73 178103Google Scholar

    [11]

    Song J B, Zhou J J, Duan H W 2012 J. Am. Chem. Soc. 134 13458Google Scholar

    [12]

    Wang Q, Li Z Y, Deng H Y, Chen Y G, Yan Y G 2023 Chem. Commun. 59 6726Google Scholar

    [13]

    Bansal A, Yang H C, Li C Z, Cho K W, Benicewicz B C, Schadler L S 2005 Nat. Mater. 4 693Google Scholar

    [14]

    Mackay M E, Tuteja A, Duxbury P M, Hawker C J, Van Horn B, Guan Z B, Chen G H, Krishnan R S 2006 Science 311 1740Google Scholar

    [15]

    邵明旭, 林嘉平, 张良顺 2025 功能高分子学报 38 318

    Shao M X, Lin J P, Zhang L S 2025 J. Funct. Polymers 38 318

    [16]

    Krishnamoorti R 2007 MRS Bull. 32 341Google Scholar

    [17]

    Wang Y Y, Chen L Y, Lu J F, Pan J X, Zhang J J 2024 Langmuir 40 16595Google Scholar

    [18]

    段芳莉, 王源 2014 63 136102Google Scholar

    Duan F L, Wang Y 2014 Acta Phys. Sin. 63 136102Google Scholar

    [19]

    Götz A W, Clark M A, Walker R C J 2014 J. Comput. Chem. 35 95Google Scholar

    [20]

    Pecina A, Lepšík M, Řezáč J, Brynda J, Mader P, Řezáčová P, Hobza P, Fanfrlík J 2013 J. Phys. Chem. B 117 16096Google Scholar

    [21]

    Li H, Zhao H T, Gao K M, Xue Z J, Chen Z B, Liu H 2024 Polym. Int. 74 152

    [22]

    Li C H, Fu X W, Zhong W H, Liu J 2019 ACS Omega 4 10216Google Scholar

    [23]

    Pal S, Seidel C 2006 Macromol. Theory Simul. 15 668Google Scholar

    [24]

    Zhong C L, Liu D H 2007 Macromol. Theory Simul. 16 141Google Scholar

    [25]

    Song W Y, Liu H, He J W, Zhu J Z, He S Y, Liu D H, Liu H, Wang Y 2022 Polym. Int. 71 1330Google Scholar

    [26]

    Liu H, Zhao H Y, Florian Müller-Plathe, Qian H J, Sun Z Y, Lu Z Y 2018 Macromolecules 51 3758Google Scholar

    [27]

    Xing J Y, Lu Z Y, Liu H, Xue Y H 2018 Phys. Chem. Chem. Phys. 20 2066Google Scholar

    [28]

    Ma S Y, Hu Y, Wang R 2016 Macromolecules 49 3535Google Scholar

    [29]

    Ma S Y, Hu Y, Wang R 2016 Macromolecules 48 3112

    [30]

    Estridge C E, Jayaraman A 2014 J. Chem. Phys. 140 144905Google Scholar

    [31]

    Hou G Y, Xia X Y, Liu J, Wang W C, Dong M J, Zhang L Q 2019 J. Phys. Chem. B 123 2157Google Scholar

    [32]

    Gupta S, Chokshi P 2020 J. Phys. Chem. B 124 11738Google Scholar

    [33]

    Moinuddin M, Tripathy M 2022 Macromolecules 55 9312Google Scholar

    [34]

    Sriramoju K K, Padmanabhan V 2016 Macromol. Theory Simul. 25 582Google Scholar

    [35]

    Li L, Han C, Xu D, Xing J Y, Xue Y H, Liu H 2018 Phys. Chem. Chem. Phys. 20 18400Google Scholar

    [36]

    Shi R, Qian H J, Lu Z Y 2017 Phys. Chem. Chem. Phys. 19 16524Google Scholar

    [37]

    Li J W, Wang J F, Yao Q, Yu K, Zhang J 2019 Nanoscale 11 7221Google Scholar

    [38]

    Xu J, Wang Y L, He X H 2015 Soft Matter 11 7433Google Scholar

    [39]

    Yan L T, Popp N, Ghosh S K, Böker A 2010 ACS Nano 4 913Google Scholar

    [40]

    Hoogerbrugge P J, Koelman J M V A 1992 Europhys. Lett. (EPL) 19 155Google Scholar

    [41]

    Park S, Lee J H, Cho M, Lee Y S, Chung H, Yang S 2024 Polym. Test. 137 108531Google Scholar

    [42]

    Zhang C, Wang Z G, Wang X H, Mou X K, Li S B 2024 Polymer 312 127664Google Scholar

    [43]

    Dong H, Zhou H, Li Y F, Li X B, Fan L L, Wen B Y, Zhao L 2024 Macromol. Theory Simul. 34 2400078

    [44]

    Zhu B W, He Z J, Jiang G S, Ning F L 2024 Polymer 290 126602Google Scholar

    [45]

    Ma Y B, Yuan X Q, Jiang R F, Liao J H, Yu R T, Chen Y P, Liao L S 2023 Polymers 15 856Google Scholar

    [46]

    Wang F, Feng L K, Li Y D, Guo H X 2023 Chin. J. Polym. Sci. 41 1392Google Scholar

    [47]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 11

    [48]

    Hu F F, Sun Y W, Zhu Y L, Huang Y N, Li Z W, Sun Z Y 2019 Nanoscale 11 17350Google Scholar

    [49]

    Li Z W, Zhu Y L, Lu Z Y, Sun Z Y 2016 Soft Matter 12 741Google Scholar

    [50]

    Zhu Y L, Pan D, Li Z W, Liu H, Qian H J, Zhao Y, Lu Z Y, Sun Z Y 2018 Mol. Phys. 116 1065Google Scholar

    [51]

    Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y 2013 J. Comput. Chem. 24 2197

    [52]

    王艳辉, 邹庆智, 朱有亮, 付翠柳, 黄以能, 李占伟, 孙昭艳 2019 高等学校化学学报 40 1037Google Scholar

    Wang Y H, Zhou Q Z, Zhu Y L, Fu C L, Huang Y N, Li Z W, Sun Z Y 2019 Chem. J. Chin. Univ. 40 1037Google Scholar

  • [1] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装.  , doi: 10.7498/aps.72.20222207
    [2] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究.  , doi: 10.7498/aps.70.20211152
    [3] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌.  , doi: 10.7498/aps.69.20200979
    [4] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , doi: 10.7498/aps.68.20190062
    [5] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件.  , doi: 10.7498/aps.68.20190533
    [6] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究.  , doi: 10.7498/aps.68.20182002
    [7] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究.  , doi: 10.7498/aps.63.116801
    [8] 林晨森, 陈硕, 李启良, 杨志刚. 耗散粒子动力学GPU并行计算研究.  , doi: 10.7498/aps.63.104702
    [9] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , doi: 10.7498/aps.62.064705
    [10] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟.  , doi: 10.7498/aps.62.124701
    [11] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列.  , doi: 10.7498/aps.61.027802
    [12] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒.  , doi: 10.7498/aps.61.138101
    [13] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟.  , doi: 10.7498/aps.61.064704
    [14] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法.  , doi: 10.7498/aps.59.7556
    [15] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟.  , doi: 10.7498/aps.59.6778
    [16] 黄渊, 刘红, 张青川. 利用微悬臂梁研究聚N-异丙基丙烯酰胺在金表面的自组装.  , doi: 10.7498/aps.58.6122
    [17] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究.  , doi: 10.7498/aps.54.1726
    [18] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象.  , doi: 10.7498/aps.54.302
    [19] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装.  , doi: 10.7498/aps.52.483
    [20] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性.  , doi: 10.7498/aps.52.3114
计量
  • 文章访问数:  313
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-19
  • 修回日期:  2025-07-15
  • 上网日期:  2025-07-24

/

返回文章
返回
Baidu
map