搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微量Mg及热处理对Al-7Si合金组织和性能的影响

王博 江鸿翔 张丽丽 何杰

引用本文:
Citation:

微量Mg及热处理对Al-7Si合金组织和性能的影响

王博, 江鸿翔, 张丽丽, 何杰

Effect of trace Mg and heat treatment on microstructure and properties of Al-7Si alloy

WANG Bo, JIANG Hongxiang, ZHANG Lili, HE Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着电子通信等行业的快速发展, 对高导热铸造铝合金材料性能要求日益增加. 本文以在电子通信等行业广泛使用的Al-7Si(质量分数, 下同)铸造铝合金为对象, 系统分析了热处理工艺制度以及少量的Mg元素添加对Al-7Si系合金微观组织及性能的影响. 结果表明: 固溶后在300 ℃下进行保温热处理有利于共晶Si的球化, 并减小溶质原子在铝基体中的固溶度, 从而导致Al-7Si合金导热性能的提升及硬度的降低; 在Al-7Si合金中添加微量Mg(0.4%)后进行三级热处理(固溶处理+300 ℃热处理+180 ℃热处理)不仅有助于共晶Si的球化, 而且能促使纳米尺度(Mg, Si)强化相的析出以及基体中固溶的Mg, Si元素含量的降低, 从而同时提高合金的力学性能和导热性能. 经历三级热处理的Al-7Si-0.4Mg合金热导率和显微硬度可达189 W/(m·K)和73.5 HV, 相较于铸态Al-Si合金分别提升了11.2%和62.6%.
    Al-Si alloys have been widely used in automotive, aerospace, electronics and communication industries due to their excellent castability, low thermal expansion, and good wear and corrosion resistance. However, the presence of coarse eutectic Si often results in relatively low thermal conductivity. With the rapid development of the electronics and communication industries, the requirements for thermal conductivity and mechanical properties of materials are increasing. In this study, the effects of heat treatment and minor Mg addition on the microstructure, mechanical properties, and thermal conductivity of Al-7Si alloys are systematically investigated.The results indicate that heat treatment at 300 ℃ after solution treatment promotes the spheroidization of eutectic Si and reduces the solid solubility of solute atoms in the aluminum matrix, thereby enhancing the thermal conductivity and reducing the hardness of the Al-7Si alloy. The three-step heat treatment process (solution treatment+300 ℃ treatment+180 ℃ treatment) not only facilitates the spheroidization of eutectic Si, but also induces the precipitation of nanoscale (Mg, Si) strengthening phases, further reducing the solid solubility of solute elements in the Al-7Si alloy with 0.4%Mg addition. After the three-step heat treatment, the Al-7Si-0.4Mg alloy reaches to 189 W/(m·K) in thermal conductivity and 73.5 HV in microhardness, respectively, which are increased by 11.2% and 62.6% respectively, compared with the as-cast Al-7Si alloy.According to the Wiedemann-Franz law and the Matthiessen-Fleming rule, the primary factors influencing the thermal conductivity of alloys are solute atoms in solid solution and secondary phases. In this study, a three-step heat treatment process is used to transform the plate-like eutectic silicon in the Al-7Si-0.4Mg alloy into fine spherical particles. Additionally, micrometer-sized silicon particles and nanoscale (Mg, Si) precipitates are induced within the alloy matrix. This microstructural modification simultaneously enhances the thermal conductivity and mechanical properties of the alloy. Our work is expected to inspire the design of Al-Si alloy with high strength and high conductivity.
  • 图 1  铸态Al-7Si合金的二次电子图像和能谱元素分布 (a) 二次电子图像; (b) 铝; (c) 硅; (d) 铁; (e) 镧; (f) 锶

    Fig. 1.  Secondary electron imaging and energy dispersive spectroscopy elemental distribution of as-cast Al-7Si alloy: (a) SEI; (b) Al; (c) Si; (d) Fe; (e) La; (f) Sr.

    图 2  Al-7Si合金的SEM图像 (a) 铸态; (b) 530 ℃固溶1 h; (c) 530 ℃固溶2 h; (d) 铸态, 300 ℃保温80 min; (e) 530 ℃固溶1 h后, 300 ℃保温80 min; (f) 530 ℃固溶2 h后, 300 ℃保温80 min

    Fig. 2.  SEM images of the Al-7Si alloy: (a) As-cast; (b) after solution treatment at 530 ℃ for 1 hour; (c) after solution treatment at 530 ℃ for 2 hours; (d) as-cast, then held at 300 ℃ for 80 minutes; (e) after solution treatment at 530 ℃ for 1 hour followed by holding at 300 ℃ for 80 minutes; (f) after solution treatment at 530 ℃ for 2 hours followed by holding at 300 ℃ for 80 minutes.

    图 3  Al-7Si合金在300 ℃下保温80 min的二次电子图像和能谱元素分布 (a) 二次电子图像; (b) 铝; (c) 硅; (d) 二次电子图像; (e) 铝; (f) 硅

    Fig. 3.  Secondary Electron Imaging and Energy Dispersive Spectroscopy elemental distribution of Al-7Si alloy at 300 ℃ for 80 minutes: (a) SEI (b) Al; (c) Si; (d) SEI (e) Al; (f) Si.

    图 4  Al-7Si合金热处理过程中热导率及硬度随时间的变化曲线 (a) 固溶过程中的热导率变化; (b) 300 ℃保温热处理过程中的热导率变化; (c) 固溶过程中的硬度变化; (d) 300 ℃保温热处理过程中的硬度变化

    Fig. 4.  Variations in thermal conductivity and hardness of Al-7Si alloy during heat treatment as a function of time: (a) Thermal conductivity variation during solution treatment; (b) thermal conductivity variation during 300 ℃ isothermal heat treatment; (c) hardness variation during solution treatment; (d) hardness variation during 300 ℃ isothermal heat treatment.

    图 5  铸态Al-7Si-0.4Mg合金的二次电子图像和能谱元素分布 (a) 二次电子图像; (b) 铝; (c) 硅; (d) 铁; (e) 镧; (f) 锶; (g) 镁

    Fig. 5.  Secondary electron imaging and energy dispersive spectroscopy elemental distribution of as-cast Al-7Si-0.4Mg alloy: (a) SEI; (b) Al; (c) Si; (d) Fe; (e) La; (f) Sr; (g) Mg.

    图 6  Al-7Si-0.4Mg合金的SEM图像 (a) 铸态; (b) 530 ℃固溶1 h; (c) 530 ℃固溶2 h; (d) 铸态, 300 ℃保温80 min; (e) 530 ℃固溶1 h后, 300℃保温80 min; (f) 530 ℃固溶2 h后, 300 ℃保温80 min

    Fig. 6.  SEM images of the Al-7Si-0.4Mg alloy: (a) As-cast; (b) after solution treatment at 530 ℃ for 1 hour; (c) after solution treatment at 530 ℃ for 2 hours; (d) as-cast, then held at 300 ℃ for 80 minutes; (e) after solution treatment at 530 ℃ for 1 hour followed by holding at 300 ℃ for 80 minutes; (f) after solution treatment at 530 ℃ for 2 hours followed by holding at 300 ℃ for 80 minutes.

    图 7  Al-7Si-0.4Mg合金热处理过程中热导率及硬度随时间的变化 (a) 固溶过程中的热导率变化; (b) 高温保温热处理过程中的热导率变化; (c) 固溶过程中的硬度变化; (d) 高温保温热处理过程中的硬度变化

    Fig. 7.  Variations in thermal conductivity and hardness of Al-7Si-0.4Mg alloy during heat treatment as a function of time: (a) Thermal conductivity variation during solution treatment; (b) thermal conductivity variation during high-temperature isothermal heat treatment; (c) hardness variation during solution treatment; (d) hardness variation during high-temperature isothermal heat treatment.

    图 8  不同热处理工艺后的Al-7Si-0.4Mg合金的室温拉伸性能

    Fig. 8.  Mechanical properties at room temperature of Al-7Si-0.4Mg alloy after different heat treatment processes.

    图 9  经历不同热处理后Al-7Si-0.4Mg合金的TEM分析结果 (a) 双级热处理(530 ℃固溶1.5 h+300 ℃保温60 min)样品的明场像及Mg, Si元素分布; (b) 三级热处理(530 ℃固溶1.5 h+300 ℃保温60 min+180 ℃×6 h)样品的明场像及Mg, Si元素分布; (c) β''β'相的高分辨图像及傅里叶变换花样

    Fig. 9.  Representative TEM images of Al-7Si-0.4Mg alloy after different heat treatments: (a) Bright-field images, Mg element distribution and Si element distribution of the double-step heat treatment samples (solution at 530 ℃ for 1.5 h+holding at 300 ℃ for 60 min); (b) bright-field image, Mg element distribution, Si element distribution of the triple-step heat treatment samples (530 ℃×1.5 h solution +300 ℃×60 min+180 ℃×6 h); (c) high resolution TEM images and corresponding FFT images of β'' and β' phase.

    表 1  实验合金的化学成分(质量分数)(单位: %)

    Table 1.  Chemical compositions (weight percent) of the experimental alloys (Unit: %).

    AlloyMgBLaSrFeSiAl
    Al-7Si00.0240.040.020.257Bal.
    Al-7Si-0.4Mg0.40.0240.040.020.257Bal.
    下载: 导出CSV

    表 2  Al-7 Si和Al-7 Si-0.4 Mg合金的热处理工艺参数

    Table 2.  Heat treatment process parameters for the Al-7 Si and Al-7 Si-0.4 Mg alloys

    AlloyProcessTemperature/℃Time
    Al-7SiSS5300 h, 0.5 h, 1 h, 1.5 h, 2 h
    HT3000 min, 20 min, 40 min,
    60 min, 80 min, 100 min
    Al-7Si-
    0.4Mg
    SS5300 h, 0.5 h, 1 h, 1.5 h, 2 h
    HT3000 min, 20 min, 40 min,
    60 min, 80 min, 100 min
    LT1800 h, 6 h, 12 h
    下载: 导出CSV

    表 3  Al-7Si-0.4Mg试样的热处理工艺及性能

    Table 3.  Heat treatment process and properties of the Al-7Si-0.4Mg samples.

    Heat treatment processThermal conductivity
    /(W·m–1·K–1)
    Hardness
    /HV
    Ultra tensile stress/MPaElongation/%
    As-cast16260.91696.25
    SS1.5 h+HT60 min18562.91768
    SS1.5 h+HT60 min+LT6 h18379.52066
    SS1.5 h+HT60 min+LT12 h18973.51865.75
    下载: 导出CSV
    Baidu
  • [1]

    刘静安, 谢水生 2004 铝合金材料的应用与技术开发 (北京: 冶金工业出版社) 第139页

    Liu J A, Xie S S 2004 Application and technical development of aluminum alloy materials (Beijing: Metallurgical Industry Press) p139

    [2]

    Zhang J X, Zhang M J, Li H F, Gu H Z, Chen D, Zhang C H, Tian Y F, Wang E J, Mu Q N 2024 J. Mater. Sci. Technol. 176 48Google Scholar

    [3]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [4]

    Zhao Z Y, Li D X, Yan X R, Chen Y, Jia Z, Zhang D Q, Han M X, Wang X, Liu G L, Liu X F, Liu S D 2024 J. Mater. Sci. Technol. 189 44Google Scholar

    [5]

    张瑞英, 李继承, 沙君浩, 李家康 2024 材料热处理学报 45 53

    Zhang R Y, Li J C, Sha J H, Li J K 2024 Trans. Mater. Heat Treat. 45 53

    [6]

    Gan J Q, Huang Y J, Du J, Wen C, Liu J 2020 Mater. Res. Express 7 086501Google Scholar

    [7]

    张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔 2023 金属学报 59 1541

    Zhang L L, Ji Z W, Zhao J Z, He J, Jiang H X 2023 Acta Metall. Sin. 59 1541

    [8]

    郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲 2021 金属学报 57 103

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z 2021 Acta Metall. Sin. 57 103

    [9]

    Zheng Q J, Zhang L L, Jiang H X, Zhao J Z, He J 2020 J. Mater. Sci. Technol. 47 142Google Scholar

    [10]

    戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰 2024 73 076401Google Scholar

    Qi Z Y, Wang B, Jiang H X, Zhang L L, He J 2024 Acta Phys. Sin. 73 076401Google Scholar

    [11]

    Dong X X, He L J, Li P J 2014 J. Alloys Compd. 612 20Google Scholar

    [12]

    Chen Z W, Lei Y M, Zhang H F. 2011 J. Alloys Compd. 509 27Google Scholar

    [13]

    Zhan M Y, Chen Z H, Yan H G 2008 J. Mater. Process. Technol. 202 269Google Scholar

    [14]

    Taghavi F, Saghafian H, Kharrazi Y H K 2009 Mater. Des. 30 115Google Scholar

    [15]

    毛卫民, 赵爱民, 崔成林, 钟雪友 1999 金属学报 35 971Google Scholar

    Mao W M, Zhao W M, Cui C L, Zhong X Y 1999 Acta Metall. Sin. 35 971Google Scholar

    [16]

    Jin C K, Bolouri A, Kang C G 2013 Metall. Mater. Trans. B 45 1068

    [17]

    Wang J Y, Wang B J, Huang L F 2017 J. Mater. Sci. Technol. 33 1235Google Scholar

    [18]

    Cheng W, Liu C Y, Huang H F, Zhang L, Zhang B, Shi L 2021 Mater. Charact. 178 111278Google Scholar

    [19]

    Torres L V, Zoqui E J 2024 Int. J. Metalcast. 18 769Google Scholar

    [20]

    Son H W, Lee J Y, Cho Y H, Jang J I, Kim S B, Lee J M 2023 J. Alloys Compd. 960 170982Google Scholar

    [21]

    Bakhtiyarov S I, Overfelt R A, Teodorescu S G 2001 J. Mater. Sci. 36 4643Google Scholar

    [22]

    刘启阳, 李庆春, 朱培钺 1987 金属科学与工艺 6 65

    Liu Q Y, Li Q C, Zhu P Y 1987 Met. Sci. Technol. 6 65

    [23]

    王奥, 盛宇飞, 鲍华 2024 73 037201Google Scholar

    Wang A, Sheng Y F, Bao H 2024 Acta Phys. Sin. 73 037201Google Scholar

    [24]

    Hou J P, Wang Q, Zhang Z J, Tian Y Z, Wu X M, Yang H J, Li X W, Zhang Z F 2017 Mater. Des. 132 148Google Scholar

    [25]

    Wang W Y, Pan Q L, Jiang F Q, Yu Y, Lin G, Wang X D, Ye J, Pan D C, Huang Z Q, Xiang S Q, Li J, Liu B 2022 J. Alloys Compd. 895 162654Google Scholar

    [26]

    Zhang J Y, Peng J. 2023 J. Mater. Res. 38 1488Google Scholar

    [27]

    Raeisinia B, Poole W J, Lloyd D J 2006 Mater. Sci. Eng. , A 420 245Google Scholar

    [28]

    Chen J K, Hung H Y, Wang C F, Tang N K 2015 J. Mater. Sci. 50 5630Google Scholar

    [29]

    Weng W P, Nagaumi H, Sheng X D, Fan W Z, Chen X C, Wang X N 2019 Light Metals Symposium at the 148th TMS Annual Meeting San Antonio, TX March 10-12, 2019 p193

    [30]

    李双寿, 唐靖林, 曾大本 2008 特种铸造及有色合金 0117 04

    Li S S, Tang J L, Zeng D B 2008 Spec. Cast. Nonferrous Alloys 0117 04

    [31]

    Sauvage X, Bobruk E V, Murashkin M Y, Nasedkina Y, Enikeev N A, Valiev R Z 2015 Acta Mater. 98 355Google Scholar

    [32]

    李小松, 蔡安辉, 陈华, 曾纪杰 2009 热加工工艺 38 117Google Scholar

    Li X S, Cai A H, Chen H, Zeng J J 2009 Hot Work. Technol. 38 117Google Scholar

  • [1] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能.  , doi: 10.7498/aps.74.20250518
    [2] 戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰. 微量稀土La对Al-7%Si-0.6%Fe合金组织与性能的影响.  , doi: 10.7498/aps.73.20231939
    [3] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能.  , doi: 10.7498/aps.66.196101
    [4] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , doi: 10.7498/aps.66.178101
    [5] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟.  , doi: 10.7498/aps.65.196202
    [6] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能.  , doi: 10.7498/aps.63.136801
    [7] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , doi: 10.7498/aps.63.236601
    [8] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究.  , doi: 10.7498/aps.62.076202
    [9] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , doi: 10.7498/aps.62.036801
    [10] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响.  , doi: 10.7498/aps.61.240701
    [11] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构.  , doi: 10.7498/aps.61.167101
    [12] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究.  , doi: 10.7498/aps.60.086802
    [13] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响.  , doi: 10.7498/aps.60.066201
    [14] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能.  , doi: 10.7498/aps.58.216
    [15] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响.  , doi: 10.7498/aps.57.3823
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , doi: 10.7498/aps.56.6118
    [17] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳. 分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变.  , doi: 10.7498/aps.55.4795
    [18] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能.  , doi: 10.7498/aps.54.4846
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究.  , doi: 10.7498/aps.54.1665
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响.  , doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  259
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-16
  • 修回日期:  2025-07-25
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map