搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于K均值聚类算法的行波管电子注层流性分析

沈长圣 张天阳 柏宁丰 陈昭福 樊鹤红 孙小菡

引用本文:
Citation:

基于K均值聚类算法的行波管电子注层流性分析

沈长圣, 张天阳, 柏宁丰, 陈昭福, 樊鹤红, 孙小菡

Analysis of laminar properites of electron beam in TWT based on K-means clustering algorithm

SHEN Changsheng, ZHANG Tianyang, BAU Ningfeng, CHEN Zhaofu, FAN Hehong, SUN Xiaohan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了提高行波管的稳定性和可靠性, 电子注的优化与设计成为真空电子器件中的关键部分, 层流性是评价电子注质量的关键参数. 提出使用K均值聚类算法将电子枪注腰处粒子简化为宏粒子的方法. 将该宏粒子作为行波管互作用区的粒子源进行注波互作用仿真, 使得仿真时间由5.53 h减少为0.65 h, 提高了仿真效率. 通过对某型号行波管的电子枪进行阴极发散角度和阴阳极间距离的调整. 仿真结果表明: 发散角度在0°—1°范围调节时, 发散角度越大, 径向均方根发射度数值也越大, 电子注层流性就越差, 行波管输出功率下降; 阴阳极间距离在0.8—1.6 mm范围内调节时, 径向均方根发射度由2.51 mm·mrad下降为2.22 mm·mrad时, 电子注的层流性得到改善, 空间行波管输出功率由328.34 W上升为414.10 W. 因此, 采用K均值聚类算法的粒子简化模型, 提升了注波互作用仿真效率, 依据电子注层流性对行波管性能的影响可以对电子枪结构参数优化.
    In order to improve the stability and reliability of the traveling wave tube (TWT), the optimization and design of the electron beam have become a key part in vacuum electronic devices. Laminar properties are a key parameter for evaluating the quality of the electron beam. The transverse displacement of the particles in the laminar electron beam is proportional to the transverse velocity. In the phase space distribution image of non-laminar properties electrons at a certain position, there is no linear relationship between the transverse displacement and the transverse velocity. The energies of particles in the electron beam are different, so the particles have different initial velocities. The particle source at the electron beam waist in the electron gun is used as a particle source for the beam wave interaction simulation. The output characteristics of the TWT more closely resemble the actual ones. A method of simplifying the particles at the electron gun beam waist into macroparticles using the K-means clustering algorithm is proposed. The macroparticle is used as a particle source in the TWT interaction zone for simulating the beam wave interaction, which reduces the simulation time from 5.53 to 0.65 h and improves the simulation efficiency. Compared with the original particle, both the simplified particle generated by the K-means clustering algorithm and the simplified particle generated by the mesh model greatly reduce the computational load of the interaction zone simulation. Compared with the results from the grid model, the simulation results of the beam-wave interaction of macroparticles, obtained by using the K-means clustering algorithm, are closer to those of the beam-wave interaction, obtained by using the original particles. By adjusting the cathode divergence angle and the distance between the anode and cathode of the electron gun of a certain type of TWT, the simulation results show that when the divergence angle is adjusted within a range of 0°—1°, the larger the divergence angle, the larger the radial root mean square emittance value, the worse the laminar properties of the electron beam, and the power of the output signal of the TWT decreases. When the distance between the anode and cathode is adjusted within a range of 0.8–1.6 mm, the radial root mean square emittance decreases from 2.51 to 2.22 mm·mrad, the laminar properties of the electron beam are improved. The output power of the TWT increases from 328.34 to 414.10 W, and the operating frequency bandwidth with an output power greater than 300 W is expanded from 3 to 5 GHz. Therefore, the particle simplification model using the K-means clustering algorithm improves the simulation efficiency of the beam wave interaction. Based on the influence of the laminar properties of the electron beam on the performance of the TWT, the structural parameters of the electron gun can be optimized.
  • 图 1  层流电子注三种粒子轨道情况以及对应相空间分布图 (a) 平行电子注; (b) 汇聚的电子注; (c) 发散的电子注

    Fig. 1.  Orbital conditions of three types of laminar electron particles and the corresponding phase space distribution diagrams: (a) Parallel electron beam; (b) convergent electron beam; (c) divergent electron beam.

    图 2  非层流电子注粒子轨道情况以及对应相空间分布图

    Fig. 2.  Orbital conditions of non-laminar electron beam particles and the corresponding phase space distribution diagrams.

    图 3  粒子速度的矢量图

    Fig. 3.  Vector diagram of particle momentum.

    图 4  使用K均值聚类算法的仿真流程图

    Fig. 4.  Simulation properties chart using the K-means clustering algorithm.

    图 5  采用K均值聚类算法分析行波管的步骤

    Fig. 5.  Steps of analyzing the TWT using the K-means clustering algorithm.

    图 6  宏粒子个数与行波管输出功率和仿真时间的关系

    Fig. 6.  Relationship between the number of macro particles and the output power of the TWT as well as the simulation time.

    图 7  使用K均值聚类算法和网格模型将电子枪注腰处粒子简化为宏粒子 (a) 使用K均值聚类算法处理截面粒子; (b) 使用K均值聚类算法简化后宏粒子分布; (c) 使用网格模型处理截面粒子; (d) 使用网格模型简化后宏粒子分布

    Fig. 7.  Particles at the waist of the electron gun are simplified into macroparticles by using the K-means clustering algorithm and the mesh model: (a) The cross-sectional particles are processed by using the K-means clustering algorithm; (b) the distribution of the macro particles after simplification by using the K-means clustering algorithm; (c) the cross-sectional particles are processed by using the mesh model; (d) the distribution of the macro particles after simplification by using the mesh model.

    图 8  使用不同输入功率的信号下的输出功率图

    Fig. 8.  Output power under signals with different input powers.

    图 9  实际电子枪的粒子源的发散角度与径向均方根发射度和行波管输出功率的关系

    Fig. 9.  Relationship of the divergence angle of the particle source of the actual electron gun to the radial rms-emittance and the output power of the TWT.

    图 10  阴阳极间距离对粒子的横向和纵向速度的影响

    Fig. 10.  Influence of the distance between the anode and cathode on the transverse and longitudinal velocities of particles.

    图 11  粒子横向速度对行波管输出信号增益的影响

    Fig. 11.  Influence of the transverse velocity of particles on the output signal gain of the TWT.

    图 12  粒子纵向速度对行波管输出信号增益的影响

    Fig. 12.  Influence of the longitudinal velocity of particles on the output signal gain of the TWT.

    图 13  阴阳极间距离变化对电子注径向均方根发射度和行波管输出功率的影响

    Fig. 13.  Influence of the distance variation between the anode and cathode on the radial rms-emittance of the electron beam and the output power of the TWT.

    图 14  阴阳极间距离为0.8和1.6 mm时, 输入信号频率与行波管输出功率的关系

    Fig. 14.  Relationship between the input signal frequency and the output power of the TWT when the distance between the anode and cathode is 0.8 mm and 1.6 mm respectively.

    表 1  螺旋线行波管参数

    Table 1.  Parameters of helical TWT.

    参数名称参数值
    工作电压/V9600
    工作电流/A0.35
    整管长度/mm241.5
    螺旋线螺距/mm1.1
    螺旋线半径/mm1
    螺旋线螺距角/(°)9.9
    磁场峰值/T0.905
    下载: 导出CSV
    Baidu
  • [1]

    Guo Z, Zhang R, Lai H, Lan F, Wang Z, Lu Z 2023 IEEE Trans. Electron Devices 70 2753Google Scholar

    [2]

    冯西贤, 缪国兴, 成红霞, 罗川川, 2024 第二十二届真空电子学学术年会论文集 p2

    Feng X, Liao G, Chen H, Luo C, 2024 Proceedings of the 22nd Academic Conference on Vacuum Electronics p2

    [3]

    Pan R, Zhong C, Qian J 2024 IEEE Trans. Ind. Inf. 20 5914Google Scholar

    [4]

    Hou J, Zhang A 2020 IEEE Trans. Ind. Inf. 16 2477Google Scholar

    [5]

    Fang X, Xu Z, Ji H, Wang B, Huang Z 2023 IEEE Trans. Ind. Inf. 19 5476Google Scholar

    [6]

    Jiang Z, Lin R, Yang F, Wu B 2018 IEEE Trans. Ind. Inf. 14 1856Google Scholar

    [7]

    Jain A K 2010 Pattern Recognit. Lett. 31 651Google Scholar

    [8]

    Wang J, Shen C, Zhang J, Fan H, Bai N, Sun X 2023 International Vacuum Electronics Conference Chengdu, China, April 25-28, 2023 p1

    [9]

    Carlsten B E, Nichols K E, Shchegolkov D Y, Simakov E I 2016 IEEE Trans. Electron Devices 63 4493Google Scholar

    [10]

    Ge X, Xu J, Yue L, Yin H, Zhao G, Wang W 2020 International Vacuum Electronics Conference Monterey, CA, USA, October 19-22, 2020 p237

    [11]

    Shen C, Bai N, Zhang J, Sun X, Fan H 2019 International Vacuum Electronics Conference Busan, Korea (South), April 28-May 01, 2019 p1

    [12]

    Louksha O, Trofimov P, Malkin A 2023 International Vacuum Electronics Conference Chengdu, China, April 25-28, 2023 p1

    [13]

    Zhang J, Geng Z, Jin Q 2022 J. Phys. Conf. Ser. 2290 012030Google Scholar

    [14]

    David J, Ives R L, Tran H T, Bui T, Read M E 2008 IEEE Trans. Plasma Sci. 36 156Google Scholar

    [15]

    Liu W, Liu S 2011 Front. Electr. Electron. Eng. Chin. 6 556Google Scholar

    [16]

    Shen C, Wang J, Zhang J, Feng J, Sun X 2022 IEEE Trans. Plasma Sci. 50 2830Google Scholar

    [17]

    Lund S M, Kikuchi T, Davidson R C 2007 Phys. Rev. Spec. Top. – Accel. Beams 12 281

    [18]

    赵国庆, 岳玲娜, 王文祥, 宫玉彬, 魏彦玉, 黄民智 2008 强激光与粒子束 20 1159

    Zhao G, Yue L, Wang W, Gong Y, Wei Y, Huang M 2008 High Power Laser Part. Beams 20 1159

    [19]

    Stockli M P, Welton R F, Keller R 2004 Rev. Sci. Instrum. 75 1646Google Scholar

    [20]

    Whaley D R 2014 IEEE Trans. Electron Devices 61 1726Google Scholar

    [21]

    李冬 2024 硕士学位论文(成都: 电子科技大学)

    Li D 2024 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

  • [1] 邱海舰, 胡玉禄, 胡权, 朱小芳, 李斌. 考虑谐波互作用的行波管欧拉非线性理论模型.  , doi: 10.7498/aps.67.20180024
    [2] 易红霞, 肖刘, 苏小保. 传输矩阵法在行波管内部反射引起的增益波动计算中的应用.  , doi: 10.7498/aps.65.128401
    [3] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究.  , doi: 10.7498/aps.63.224101
    [4] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究.  , doi: 10.7498/aps.63.238403
    [5] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究.  , doi: 10.7498/aps.61.154208
    [6] 殷海荣, 徐进, 岳玲娜, 宫玉彬, 魏彦玉. 一种折叠波导行波管大信号互作用理论.  , doi: 10.7498/aps.61.244106
    [7] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究.  , doi: 10.7498/aps.61.124101
    [8] 胡权. 变周期大结构低压工作折叠波导行波管的理论与模拟研究.  , doi: 10.7498/aps.61.014101
    [9] 赖剑强, 魏彦玉, 许雄, 沈飞, 刘洋, 刘漾, 黄民智, 唐涛, 宫玉彬. 140GHz大功率交错双栅行波管的设计和模拟研究.  , doi: 10.7498/aps.61.178501
    [10] 刘漾, 魏彦玉, 沈飞, 许雄, 刘洋, 赖剑强, 黄明智, 唐涛, 宫玉彬. 开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究.  , doi: 10.7498/aps.61.168401
    [11] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计.  , doi: 10.7498/aps.60.068403
    [12] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟.  , doi: 10.7498/aps.59.8484
    [13] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算.  , doi: 10.7498/aps.58.3118
    [14] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析.  , doi: 10.7498/aps.57.3562
    [15] 宫玉彬, 邓明金, 段兆云, 吕明毅, 魏彦玉, 王文祥. 衰减器对螺旋线慢波结构高频特性影响的理论研究.  , doi: 10.7498/aps.56.4497
    [16] 肖 刘, 苏小保, 刘濮鲲. 基于行波管螺旋导电面模型的空间电荷场研究.  , doi: 10.7498/aps.55.5150
    [17] 李建清, 莫元龙. 行波管中慢电磁行波与电子注非线性互作用普遍理论.  , doi: 10.7498/aps.55.4117
    [18] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究.  , doi: 10.7498/aps.54.4223
    [19] 郝建红, 丁 武, 张治畴. 行波管放大器中场极限环和混沌行为的阈值分析.  , doi: 10.7498/aps.52.1979
    [20] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌.  , doi: 10.7498/aps.52.906
计量
  • 文章访问数:  215
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 修回日期:  2025-07-14
  • 上网日期:  2025-08-08

/

返回文章
返回
Baidu
map