搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基分子磁隧道结的设计和自旋输运性质研究

邸茂云 李鹏乐 付林 许永杰 李瑾 邝亚飞 胡季帆

引用本文:
Citation:

碳基分子磁隧道结的设计和自旋输运性质研究

邸茂云, 李鹏乐, 付林, 许永杰, 李瑾, 邝亚飞, 胡季帆

Design and spin-dependent transport properties of carbon-based molecular magnetic tunnel junctions

DI Maoyun, LI Pengle, FU Lin, XU Yongjie, LI Jin, KUANG Yafei, HU Jifan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 分子磁隧道结作为一种新型磁隧道结, 在提升器件的隧道磁阻和优化双自旋过滤效应方面具有独特优势. 通过裁剪6,6,12-石墨炔获得纳米点, 并与锯齿型石墨烯纳米带组合设计了两类纯碳基分子磁隧道结. 利用密度泛函理论和非平衡格林函数相结合的方法计算了基于6,6,12-石墨炔分子磁隧道结器件的自旋相关输运性质. 结果表明, 两类器件都获得了巨大的隧道磁阻值, 其最高数值可达到109%量级. 此外, 两类器件都获得了完美的双自旋过滤效应. 对于中心纳米点为六元终端的这类分子磁隧道结, 其自旋过滤效应除了可以通过偏压实现调控, 还可以通过外磁场改变电极的磁化方向有效调控, 从而具备双场调控的特性, 这在实际应用中具有更广泛的适用性. 值得注意的是, 中心纳米点是六元环终端的分子磁隧道结中电子态密度非常小, 使其工作电流低至10 pA量级, 这在降低器件功耗方面具有重要优势. 这些有趣的现象表明, 基于6,6,12-GY的纯碳基分子磁隧道结在未来自旋电子器件中具有潜在的应用价值.
    Spintronics holds profound significance for the development of future electronic devices, among which magnetic tunnel junctions (MTJs) represent a crucial spintronic device. In order to achieve excellent performance, such as higher tunnel magnetoresistance (TMR) and spin filtering effects, the molecular MTJs (MMTJs) have been investigated. Here, we adopt 6,6,12-graphyne (6,6,12-GY) nanodots as the barrier material in the central scattering region, while zigzag-edged graphene nanoribbons (ZGNRs) are adopted as electrode materials. Two kinds of devices, denoted as M1n and M2n, are constructed, which differ in the termination of the nanodots in the central scattering region. Due to the fact that the magnetization directions of the two ZGNRs electrodes can be set to be parallel (P) or antiparallel (AP), both M1n and M2n devices exhibit two different magnetic configurations. In this work, the structures are optimized using first-principles calculations based on density functional theory (DFT), as implemented in the Vienna ab-initio simulation package (VASP). By combining DFT with the nonequilibrium Green’s function (NEGF) method, the spin transport properties of MMTJs are studied.The calculated results show that both devices achieve high TMR effects, with their values reaching up to 108% in M1n and 109% in M2n. The total current calculations indicate that a distinct difference emerges between the P and AP configurations after applying a bias voltage, which leads to a superior TMR. These findings offer valuable insights into the future development of highly sensitive spintronic devices. From the perspective of spin current, it can be observed that for both M1n and M2n devices with AP configuration, opposite-direction spin currents can be obtained by applying positive or negative bias voltage. Namely, in the AP configuration, both devices achieve the ±100% spin polarization (SP), indicating a dual spin filtering effect. In the P configuration, the spin-up and spin-down currents in M1n exhibit similar trends with the bias increasing, while M2n can produce a pure spin-down current with the number of nanodots increasing. The 100% spin filtering efficiency achieved in these carbon-based devices is of great significance for increasing the storage density and operation speed of future spintronic devices. Notably, apart from the bias voltage, the spin current of M2n can also be controlled by switching the magnetization direction of the electrodes. In addition, the current in M2n is much smaller than that in M1n, which implies low power consumption in device applications. Our investigation on the spin-dependent transport properties of 6,6,12-GY-based MMTJs paves the way for promising spintronic applications of carbon-based materials.
  • 图 1  器件各组分和器件整体的结构图 (a) 6,6,12-GY的结构图, 紫色和绿色碳原子表示裁剪的两种不同纳米点类型; (b) ZGNRs的自旋差分电荷和能带结构图, 红色和蓝色表示净自旋向上或自旋向下; (c) 设计的两种类型的MMTJs

    Fig. 1.  Structure of MMTJs and its isolated components: (a) The structure of 6,6,12-GY, and purple and green atoms show two kinds of nanodots; (b) the spin difference densities and band structures of ZGNRs, where the red (blue) regions and the corresponding lines represent the spin-up (down) components; (c) the schematic diagrams of two kinds of MMTJs.

    图 2  P和AP构型下的自旋差分密度 (a) M11器件的结果; (b) M21器件的结果. 红色和蓝色表示净的自旋向上和自旋向下分量. 等值面设置为±0.008 e3

    Fig. 2.  Spin difference densities △ρ of the P and AP spin configurations: (a) The results of the M11 device; (b) the results of the M21 device. The red and blue colors represent the spin-up and spin-down components. The isosurface values are taken as ±0.008 e3

    图 3  P和AP构型下的总电流 (a)—(c) 器件M1n的总电流; (d)—(f) 器件M2n的总电流

    Fig. 3.  Total currents of the P and AP spin configurations: (a)–(c) The results of M1n devices; (d)–(f) the results of M2n devices.

    图 4  器件在整个偏压下的TMR曲线图 (a)—(c) 器件M1n的结果; (d)—(f) 器件M2n的结果

    Fig. 4.  TMR curve of devices in whole bias voltage: (a)–(c) The results of M1n devices; (d)–(f) the results of M2n devices.

    图 5  器件M1n的自旋电流 (a)—(c) P构型下的结果; (d)—(f) AP构型下的结果

    Fig. 5.  Spin currents of M1n devices: (a)–(c) The results of P spin configurations; (d)–(f) the results of AP spin configurations.

    图 6  器件在不同偏压下的自旋极化率 (a)—(c) 器件M1n的结果; (d)—(f) 器件M2n的结果

    Fig. 6.  Spin polarization ratios of devices at different bias voltage: (a)–(c) The results of M1n devices; (d)–(f) the results of M2n devices.

    图 7  器件M2n的自旋电流 (a)—(c) P构型下的结果; (d)—(f) AP构型下的结果

    Fig. 7.  Spin currents of M2n devices: (a)–(c) The results of P spin configurations; (d)–(f) the results of AP spin configurations.

    图 8  器件M1n在P和AP构型下的自旋相关透射谱, 虚线表示偏压窗 (a) M11, (c) M12和 (e) M13在P构型下的透射谱; (b) M11, (d) M12和 (f) M13在AP构型下的透射谱

    Fig. 8.  Spin-resolved transmission spectra of M1n devices in P and AP spin configurations, the black dash lines indicate the bias window. The P configurations of (a) M11, (c) M12 and (e) M13; AP configurations of (b) M11, (d) M12 and (f) M13.

    图 9  器件M2n在P和AP构型下的自旋相关透射谱, 虚线表示偏压窗 (a) M11, (c) M12和 (e) M13在P构型下的透射谱; (b) M11, (d) M12和 (f) M13在AP构型下的透射谱

    Fig. 9.  The spin-resolved transmission spectra of M2n devices in P and AP spin configurations, the black dash lines indicate the bias window. The P configurations of (a) M21, (c) M22 and (e) M23; AP configurations of (b) M21, (d) M22 and (f) M23.

    图 10  器件M11在P和AP构型下的PDOS图 (a), (c) 0.2 V的结果; (b), (d) 0.5 V的结果

    Fig. 10.  PDOS of the M11 device in P and AP spin configurations: (a), (c) The results at ${V_{\text{b}}}$ = 0.2 V; (b), (d) the results at ${V_{\text{b}}}$ = 0.5 V.

    图 11  器件M21在P和AP构型下的PDOS图 (a), (c) 0.2 V的结果; (b), (d) 0.5 V的结果

    Fig. 11.  PDOS of M21 device in P and AP spin configurations: (a), (c) The results at ${V_{\text{b}}}$ = 0.2 V; (b), (d) the results at ${V_{\text{b}}}$ = 0.5 V.

    Baidu
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S von, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Cheng H, Liu Z, Yao K 2011 Appl. Phys. Lett. 98 172107Google Scholar

    [3]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2016 Carbon 98 204Google Scholar

    [4]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J C, Martin M-B, Dlubak B, Seneor P 2022 ACS Nano 16 14007Google Scholar

    [5]

    Han Z, Hao H, Zheng X, Zeng Z 2023 Phys. Chem. Chem. Phys. 25 6461Google Scholar

    [6]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868Google Scholar

    [7]

    Dai J Q 2016 J. Appl. Phys. 120 074102Google Scholar

    [8]

    Hu L, Wu X, Feng Y, Liu Y, Xu Z, Gao G 2022 Nanoscale 14 7891Google Scholar

    [9]

    Li J, Xu L C, Yang Y, Liu X, Yang Z 2018 Carbon 132 632Google Scholar

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [11]

    Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K 2018 Chem. Soc. Rev. 47 3059Google Scholar

    [12]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [13]

    Son Y W, Cohen M L, Louie S G. 2006 Nature 444 347Google Scholar

    [14]

    Rao S S, Jammalamadaka S N, Stesmans A, Moshchalkov V V, van Tol J, Kosynkin D V, Higginbotham-Duque A, Tour J M 2012 Nano Lett. 12 1210Google Scholar

    [15]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [16]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804Google Scholar

    [17]

    王天会, 李昂, 韩柏 2019 68 187102Google Scholar

    Wang T H, Li A, Han B 2019 Acta Phys. Sin. 68 187102Google Scholar

    [18]

    Cao L, Li X, Jia C, Liu G, Liu Z, Zhou G 2018 Carbon 127 519Google Scholar

    [19]

    Li J, Yang Z, Xu L, Yang Y, Liu X 2019 J. Mater. Chem. C 7 1359

    [20]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [23]

    Zheng X, Chen M, Xie Y 2022 Phys. Chem. Chem. Phys. 24 24328Google Scholar

    [24]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lü C, Bournel A, Zhao W 2021 Nanoscale 13 862Google Scholar

    [25]

    Iqbal M Z, Hussain G, Siddique S, Iqbal M W 2017 J. Magn. Magn. Mater. 441 39Google Scholar

    [26]

    Yamaguchi D, Kitaori A, Nagaosa N, Tokura Y 2025 Adv. Mater. 37 2420614Google Scholar

    [27]

    Ishizuka H, Nagaosa N 2020 Nat. Commun. 11 2986Google Scholar

    [28]

    Feng Y, Liu N, Gao G 2021 Appl. Phys. Lett. 118 112407Google Scholar

    [29]

    Li Y, Ma Z, Song X, Yang Z, Xu L C, Liu R, Li X, Liu X, Hu D 2017 Comput. Mater. Sci. 136 1Google Scholar

    [30]

    Gao Y, Xu L, Li A, Ouyang F 2023 Results Phys. 46 106315Google Scholar

    [31]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [32]

    Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J Mater. Chem. C 2 6648Google Scholar

  • [1] 李晓波, 刘帅奇, 黄演, 马玉, 丁文策. 卤素及含氧元素掺杂对α-2-石墨炔纳米带的负微分电阻效应与自旋过滤效应的调控.  , doi: 10.7498/aps.74.20241518
    [2] 樊译颉, 张阮, 陈宇, 蔡星汉. CrCl3隧穿磁阻的界面效应与多场效应调控.  , doi: 10.7498/aps.73.20240431
    [3] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型.  , doi: 10.7498/aps.70.20211128
    [4] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究.  , doi: 10.7498/aps.70.20201905
    [5] 杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜. Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入.  , doi: 10.7498/aps.70.20202136
    [6] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , doi: 10.7498/aps.68.20181754
    [7] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究.  , doi: 10.7498/aps.68.20190859
    [8] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应.  , doi: 10.7498/aps.68.20190817
    [9] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质.  , doi: 10.7498/aps.65.016101
    [10] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性.  , doi: 10.7498/aps.65.118501
    [11] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , doi: 10.7498/aps.65.227302
    [12] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , doi: 10.7498/aps.65.068503
    [13] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应.  , doi: 10.7498/aps.64.196101
    [14] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响.  , doi: 10.7498/aps.62.056103
    [15] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应.  , doi: 10.7498/aps.62.036103
    [16] 张嵛, 刘连庆, 焦念东, 席宁, 王越超, 董再励. 锯齿型石墨烯带缺陷改性方法研究.  , doi: 10.7498/aps.61.137101
    [17] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响.  , doi: 10.7498/aps.61.177202
    [18] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究.  , doi: 10.7498/aps.61.047106
    [19] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构.  , doi: 10.7498/aps.60.097301
    [20] 王雪梅, 刘红. 锯齿型石墨烯纳米带的能带研究.  , doi: 10.7498/aps.60.047102
计量
  • 文章访问数:  421
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-05
  • 修回日期:  2025-09-01
  • 上网日期:  2025-09-09

/

返回文章
返回
Baidu
map