-
纳米尺度下液体的蒸发因微观效应的影响而显著增强,其速率甚至超过经典赫兹-克努森方程的预测上限。这一特性使纳米液体蒸发在太阳能界面蒸发、电子散热及微流控等领域展现出重要应用价值。然而,现有研究多聚焦于单一微观效应的影响,对多种效应协同作用机制的认识仍显不足。为了准确地描述纳米尺度下液体的相变行为,本研究以液氩为对象,系统探讨了纳米尺度下液氩的势能与空化效应协同作用对液氩蒸发的影响机制。采用了分子动力学模拟研究在不同固液相互作用强度的纳米通道内液氩的蒸发,结果表明固液相互作用强度增大使液氩势能减小,蒸发能垒增大理论上抑制其蒸发。但由此所形成的毛细压力诱导液氩内部负压而形成的空化效应增大了液氩的蒸发面积,进而促进液氩的蒸发,并且还伴随着蒸发模式的转变。本研究表明,在εsl=0.5εll εsl=εll ε sl=2εllε sl=4εsl四种不同固液相互作用强度的通道中液氩的蒸发速率依次为: 3.95×10-14 kg/s、3.49×0-14 kg/s、3.02×0-14 kg/s以及2.44×0-14 kg/s ,可得出在中等固液相互作用强度εsl=εsl下二者达到最佳的协同效果,蒸发速率达到最大值。Liquid evaporation at the nanoscale is significantly enhanced by microscopic effects, with its rate even exceeding the predicted upper limit of the classical HertzKnudsen equation. This property makes nanoscale liquid evaporation highly valuable for applications in solar-driven interfacial evaporation, electronics cooling, and microfluidics. However, existing research predominantly focuses on the influence of individual microscopic effects, leaving the synergistic mechanisms of multiple effects poorly understood. To deeply reveal the microscopic mechanism of liquid phase change at the nanoscale, this study employs liquid argon as a model system to systematically investigate the synergistic effect of potential energy and cavitation on its evaporation. Using molecular dynamics simulations, we studied the evaporation process of liquid argon within nanochannels characterized by different solid-liquid interaction strengths under identical temperature and time frames. The results indicate that an increase in the solid-liquid interaction strength reduces the average potential energy of liquid argon and increases the evaporation energy barrier, which theoretically should suppress evaporation. Nevertheless, the capillary pressure induced by the increased meniscus curvature leads to negative pressure within the liquid argon, triggering a cavitation effect. This cavitation generates bubbles inside the liquid argon, which significantly increases the evaporation surface area and consequently promotes evaporation. Furthermore, the meniscus-dominated evaporation mode is gradually weakened, while the contribution from cavitation bubbles becomes increasingly pronounced. This study demonstrates that the evaporation rates of liquid argon in the four nanochannels with different interaction strengths are 3.49×10-14 kg/s, 3.95×10-14 kg/s, 3.02×10-14 kg/s, and 2.44×10-14 kg/s, respectively. Therefore, it is concluded that the evaporation rate does not vary linearly with increasing solid-liquid interaction strength. Instead, the synergistic state between potential energy and the cavitation effect is optimized at a medium interaction strength, leading to a maximum evaporation rate.
-
Keywords:
- Molecular dynamics /
- Nanoscale evaporation /
- Liquid argon potential energy /
- Cavitation effect /
- Synergistic interaction
-
[1] Cheng H, Hu Y, Zhao J 2009 Environ. Sci. Technol. 43 240
[2] Lu W Q, Xie S H, Zhou W S, Zhang S H, Liu A L 2008 Open Environ. Sci. 21
[3] Huang J, Zhang Y, Bing H, Peng J, Dong F, Gao J, Arhonditsis G B 2021 Water Res. 201 117309
[4] Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, Deng T 2018 Nat. Energy 3 1031
[5] Vélez-Cordero J R, Hernandez-Cordero J 2015 Int. J. Therm. Sci. 96 12
[6] Kashyap V, Ghasemi H 2020 J. Mater. Chem. A 8 7035
[7] Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T, Chen G 2016 Nat. Energy 1 1
[8] Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G 2014 Nat. Commun. 5 4449
[9] Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J 2013 ACS nano 7 42
[10] Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T, Chen G 2016 Nat. Energy 1 1
[11] Dai X, Yang F, Yang R, Huang X, Rigdon WA, Li X, Li C 2014 Appl. Phys. Lett. 105 191611
[12] Huang Z, Chen B, Mo X, Yang X, Yu L, Hu X, Liu K 2021 Adv. Mater. Interfaces 8 2100660
[13] Lee W C, Ronghe A, Villalobos L F, Huang S, Dakhchoune M, Mensi M, Agrawal K V 2022 ACS nano 16 15382
[14] Lee P S, Garimella S V 2008 Int. J. Heat Mass Transf. 51 789
[15] Steinke M E, Kandlikar S G 2004 J. Heat Transf. 126 518
[16] Bar-Cohen A, Sheehan J R, Rahim E 2012 Microgravity Sci. Technol. 24 1
[17] Lee J, Mudawar I 2005 Int. J. Heat Mass Transf. 48 941
[18] Li Y, Alibakhshi M A, Zhao Y, Duan C 2017 Nano Lett. 17 4813
[19] Fan J C, Wu H A, Wang F C 2020 Phys. Fluids 32 12001
[20] Maroo S C, Chung J N 2011 Nanoscale Res. Lett. 6 72
[21] Sharma S, Debenedetti P G 2012 J. Phys.Chem. B 116 13282
[22] Pati S, Som S K, Chakraborty S 2013 Int. J. Heat Mass Transf. 64 304
[23] Duan C, Karnik R, Lu M C, Majumdar A 2012 Proc. Natl. Acad. Sci. U.S.A. 109 3688
[24] Agrawal K V, Shimizu S, Drahushuk LW, Kilcoyne D, Strano M S 2017 Nat. Nanotechnol. 12 267
[25] Chandra A, Keblinski P 2020 J. Chem. Phys. 153 12
[26] Plimpton S 1995 J. Comput. Phys. 117 1
[27] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[28] Ohtomo N, Tanaka Y 1987 J. Phys. Soc. Jpn. 56 2801
[29] Mei T, Chen Z X, Yang L, Zhu H M, Miao R C 2020 Acta Phys. Sin. 69 224701 (in Chinese) [梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿 2020 69 224701]
[30] Xie H, Xu Y Q, Zhong C 2022 Chin. Phys. B 31 114701
[31] Doebele V, Benoit-Gonin A, Souris F 2020 Phys. Rev.Lett. 125 255701
[32] Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 114702 (in Chinese) [叶学民, 张湘珊, 李明兰, 李春曦 2018 67 114702]
[33] Maroo S C, Chung J N 2010 Int. J. Heat Mass Transf. 53 3335
计量
- 文章访问数: 20
- PDF下载量: 0
- 被引次数: 0