Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excitation energies and radiative transition rates of isoelectronic sequences of Li-like ions with Z = 6–51

ZHAO Jiaxun WU Chensheng SONG Qinghe

Citation:

Excitation energies and radiative transition rates of isoelectronic sequences of Li-like ions with Z = 6–51

ZHAO Jiaxun, WU Chensheng, SONG Qinghe
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Li-like ions widely exist in astrophysical and laboratory plasmas, and their precise atomic parameters (e.g. excitation energies and transition rates) are very important for plasma diagnostics and spectral analysis. In this work, we employ the GRASP2018 software package, which is widely used in atomic structure calculations, to systematically compute the lowest 15 energy levels and the electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition rates between them of 17 Li-like ions across the isoelectronic sequence (Z = 6–51: C3+, F6+, Mg9+, P12+, Ar15+, Sc18+, Cr21+, Co24+, Zn27+, As30+, Kr33+, Y36+, Mo39+, Rh42+, Cd45+, Sn37+, Sb38+). The calculations are based on the multi-configuration Dirac-Fock (MCDF) and configuration interaction (CI) method combined with high-order relativistic corrections and QED effects such as Breit interaction, self-energy correction and vacuum polarization. The computational convergence is achieved. The calculated excitation energies and transition rates are compared with the NIST database and previous theoretical results. Due to the reasonable construction and larger scale of baseset, the current computational results show evident improvement compared with the results obtained using the same MCDF+CI method previously. Particularly for the two lowest excited states, [1s22p]1/2 and [1s22p] 3/2, which exhibit slower convergence, the relative difference between current results and the NIST data is reduced by one to two orders of magnitude compared with previous MCDF+CI calculations. This accuracy even approaches that achieved by S-matrix methods specifically optimized for the ground state and these two lowest excited states. For transition rates, except for certain weak transitions with rates below $ {10}^{3}\;{{{\mathrm{s}}}}^{{-1}} $, the difference between our calculations and previous theoretical results obtained using the MCDF+CI method is still within 1%. Furthermore, our calculations accord with the NIST data within 5% for the majority of transitions. A comparison of NIST data with other previous theoretical results shows evident discrepancies between our calculations and the NIST data for some excitation energies and transition rates. Our results are consistent with other theoretical results for these specific values, indicating that these particular energy levels and transitions need more detailed theoretical and experimental investigation. This work provides highly accurate data for supporting experimental diagnostics and theoretical modeling of astrophysical and laboratory plasmas in future research. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00154.
  • 图 1  Mg9+, Cr21+, Mo39+三种离子两个激发态[1s22p]1/2和[1s24f]5/2的激发能随着基组扩大的收敛情况

    Figure 1.  Convergence of the excitation energy for two excited states [1s22p]1/2 and [1s24f]5/2 of Mg9+, Cr21+ and Mo39+ ions with basis set expansion.

    图 2  Mg9+, Cr21+, Mo39+三种离子能级间E1, M1, E2跃迁的跃迁速率与相对不确定度之间的关系

    Figure 2.  Relationship between the calculated transition rates (E1, M1, E2) and the relative uncertainties of the results for level transitions in the Mg9+, Cr21+ and Mo39+ ions.

    表 1  准完备基组的构建

    Table 1.  Construction of the quasi-complete basis.

    要优化的轨道a) 参考组态选取b) 优化的能级c)
    基组(n ≤ 2) 1s2s2p [1s22s, 1s22p] [1s22s]1/2, [1s22p]1/2, 3/2
    基组(n ≤ 3) 3s3p3d [1s22s, 1s22p, 1s23s, 1s23p, 1s23d] [1s22s]1/2, [1s22p]1/2, 3/2,
    [1s23s]1/2, [1s23p]1/2, 3/2,
    [1s23d]3/2, 5/2
    基组(n ≤ 4) 4s4p4d4f [1s22s, 1s22p, 1s23s, 1s23p, 1s23d,
    1s24s, 1s24p, 1s24d, 1s24f]
    [1s22s]1/2, [1s22p]1/2, 3/2,
    [1s23s]1/2, [1s23p]1/2, 3/2,
    [1s23d]3/2, 5/2, [1s24s]1/2,
    [1s24p]1/2, 3/2, [1s24d]3/2, 5/2,
    [1s24f]5/2, 7/2
    基组(n ≤ 5) 5s5p5d5f5g [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s,
    1s24p, 1s24d, 1s24f→5s5p5d5f5g]S, D
    同上
    基组(n ≤ 6) 6s6p6d6f6g6 h [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→6s6p6d6f6g6 h]S, D
    同上
    基组(n ≤ 7) 7s7p7d7f7g7 h7i [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→7s7p7d7f7g7 h7i]S, D
    同上
    基组(n ≤ 8) 8s8p8d8f8g8 h8i8k [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→8s8p8d8f8g8 h8i8k]S, D
    同上
    基组(n ≤ 9) 9s9p9d9f9g9 h9i9k [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→9s9p9d9f9g9 h9i9k]S, D
    同上
    注: a)n = 1, 2, 3, 4的轨道为光谱轨道, $ n\geqslant 5 $的轨道为赝轨道; b)1s22s, 1s22p等为非相对论参考组态, “S”, “D”分别表示单、双重激发产生组态; c)MCSCF计算时优化的能级.
    DownLoad: CSV

    表 2  Mg9+激发能(单位: eV)计算结果及其与NIST[26]和其他理论计算结果[11, 15, 16]的比较

    Table 2.  Excitation energy (in eV) data for Mg9+ and its comparison with NIST[26] and other theoretical computational results[11,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0 0
    2 [1s22p]1/2 19.8405 19.83922 19.9758 19.8297 19.8382 0.007 0.688 –0.048 –0.005
    3 [1s22p]3/2 20.3343 20.33202 20.4655 20.3242 20.3315 0.011 0.656 –0.038 –0.003
    4 [1s23s]1/2 208.6336 208.628 208.5291 0.003 –0.047
    5 [1s23p]1/2 214.0728 214.061 214.0012 0.006 –0.028
    6 [1s23p]3/2 214.2184 214.224 214.1457 –0.003 –0.037
    7 [1s23d]3/2 216.1664 216.17 216.0475 –0.002 –0.057
    8 [1s23d]5/2 216.2115 216.215 216.0921 –0.002 –0.057
    9 [1s24s]1/2 279.2771 279.29 279.1520 –0.005 –0.049
    10 [1s24p]1/2 281.5067 281.463 281.3948 0.016 –0.024
    11 [1s24p]3/2 281.5680 281.463 281.4556 0.037 –0.003
    12 [1s24d]3/2 282.3775 282.359 282.2479 0.007 –0.039
    13 [1s24d]5/2 282.3965 282.40 282.2667 –0.001 –0.047
    14 [1s24f]5/2 282.4407 282.443 282.3021 –0.001 –0.050
    15 [1s24f]7/2 282.4510 282.453 282.3114 –0.001 –0.050
    注: a) NIST[26]数据库收录数据; b)文献[11]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    DownLoad: CSV

    表 4  Mo39+激发能(单位eV)计算结果及其与NIST[26]和其他理论计算结果[12,15,16]的比较

    Table 4.  Excitation energy (in eV) data for Mo39+ and its comparison with NIST[26] and other theoretical computational results[12,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0
    2 [1s22p]1/2 86.1124 86.108 86.2085 86.1764 86.1041 0.005 0.117 0.079 –0.005
    3 [1s22p]3/2 212.0023 211.9956 212.1476 212.1689 211.982 0.003 0.072 0.082 –0.006
    4 [1s23s]1/2 3206.9762 3207.1 3206.7966 –0.004 –0.009
    5 [1s23p]1/2 3230.8215 3230.8 3230.8328 0.001 0.001
    6 [1s23p]3/2 3268.1729 3268.1 3268.1355 0.002 0.001
    7 [1s23d]3/2 3276.6290 3276.5 3276.5429 0.004 0.001
    8 [1s23d]5/2 3288.2659 3288.1 3288.1599 0.005 0.002
    9 [1s24s]1/2 4314.1977 4313.9 0.007
    10 [1s24p]1/2 4323.9937 4323.8 0.004
    11 [1s24p]3/2 4339.7142 4339.5 0.005
    12 [1s24d]3/2 4343.2364 4343.1 0.003
    13 [1s24d]5/2 4348.1528 4348.0 0.004
    14 [1s24f]5/2 4348.3516
    15 [1s24f]7/2 4350.7885
    注: a) NIST[26]数据库收录数据; b)文献[12]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    DownLoad: CSV

    表 3  Cr21+激发能(单位: eV)计算结果及其与NIST[26]和其他理论计算结果[10,15,16]的比较

    Table 3.  Excitation energy (in eV) data for Cr21+ and its comparison with NIST[26] and other theoretical computational results[10,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0 0
    2 [1s22p]1/2 44.3259 44.3322 44.4933 44.3417 44.3209 –0.014 0.363 0.021 –0.025
    3 [1s22p]3/2 55.6001 55.5958 55.7466 55.6222 55.5918 0.008 0.271 0.047 –0.007
    4 [1s23s]1/2 967.4110 967.40 967.2840 0.001 –0.012
    5 [1s23p]1/2 979.7019 979.68 979.6261 0.002 –0.005
    6 [1s23p]3/2 983.0371 983.02 982.9546 0.002 –0.007
    7 [1s23d]3/2 987.7139 987.70 987.5784 0.001 –0.012
    8 [1s23d]5/2 988.7666 988.75 988.6288 0.002 –0.012
    9 [1s24s]1/2 1300.2631 1300.12 1300.1223 0.011 0.000
    10 [1s24p]1/2 1305.3243 1305.28 1305.2034 0.003 –0.006
    11 [1s24p]3/2 1306.7288 1306.69 1306.6053 0.003 –0.006
    12 [1s24d]3/2 1308.6689 1308.66 1308.5255 0.001 –0.010
    13 [1s24d]5/2 1309.1131 1309.10 1308.9686 0.001 –0.010
    14 [1s24f]5/2 1309.2268 1309.0709
    15 [1s24f]7/2 1309.4480 1309.2923
    注: a) NIST[26]数据库收录数据; b)文献[10]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    DownLoad: CSV

    表 5  Mg9+跃迁速率(单位: ${{{\mathrm{s}}}}^{{-1}} $)计算结果及其与NIST[26]数据及其他理论计算结果[11]的比较

    Table 5.  Comparison of transition rates (in $ {\mathrm{s}}^{-1} $) calculations for Mg9+ with NIST[26] data and other Ref. [11].

    跃迁编号 上能级编号 下能级编号 跃迁类型 当前计算a) NIST b) 其他理论结果c) 与NIST的相对差异/%
    当前计算 其他理论结果
    1 2 1 E1 6.982×108 6.95×108 7.176×108 0.45 3.25
    2 5 1 E1 2.149×1011 2.17×1011 2.136×1011 –0.96 –1.55
    3 10 1 E1 9.744×1010 9.93×1010 9.700×1010 –1.88 –2.31
    4 5 4 E1 8.870×107 8.85×107 9.023×107 0.23 1.95
    5 10 4 E1 2.678×1010 2.69×1010 2.672×1010 –0.44 –0.67
    6 10 9 E1 2.060×107 1.91×107 2.090×107 7.84 9.40
    7 3 1 E1 7.530×108 7.51×108 7.736×108 0.27 3.01
    8 6 1 E1 2.135×1011 2.16×1011 2.122×1011 –1.18 –1.76
    9 11 1 E1 9.693×1010 9.88×1010 9.651×1010 –1.89 –2.31
    10 6 4 E1 9.616×107 9.67×107 9.771×107 –0.56 1.04
    11 11 4 E1 2.656×1010 2.68×1010 2.651×1010 –0.89 –1.10
    12 11 9 E1 2.238×107 1.91×107 2.267×107 17.17 18.66
    13 4 2 E1 3.456×1010 3.39×1010 3.428×1010 1.96 1.12
    14 9 2 E1 1.353×1010 1.34×1010 1.340×1010 0.95 0.00
    15 9 5 E1 9.319×109 9.47×109 9.324×109 –1.60 –1.54
    16 7 2 E1 5.569×1011 5.48×1011 5.580×1011 1.62 1.83
    17 12 2 E1 1.826×1011 1.85×1011 1.835×1011 –1.28 –0.79
    18 7 5 E1 3.315×106 3.38×106 3.096×106 –1.92 –8.42
    19 12 5 E1 5.791×1010 5.83×1010 5.795×1010 –0.66 –0.60
    20 12 10 E1 1.018×106 1.11×106 9.542×105 –8.28 –14.04
    21 10 7 E1 4.340×109 4.26×109 4.323×109 1.88 1.48
    22 11 7 E1 4.278×108 4.26×108 4.262×108 0.41 0.04
    23 14 7 E1 1.289×1011 1.290×1011
    24 14 12 E1 2.635×102 1.704×102
    25 4 3 E1 6.967×1010 6.81×1010 6.909×1010 2.31 1.45
    26 9 3 E1 2.724×1010 2.67×1010 2.694×1010 2.02 0.90
    27 9 6 E1 1.878×1010 1.88×1010 1.878×1010 –0.12 –0.11
    28 7 3 E1 1.111×1011 1.09×1011 1.113×1011 1.94 2.11
    29 12 3 E1 3.637×1010 3.66×1010 3.654×1010 –0.64 –0.16
    30 7 6 E1 5.339×105 5.31×105 4.968×105 0.54 –6.44
    31 12 6 E1 1.160×1010 1.16×1010 1.160×1010 –0.04 0.00
    32 12 11 E1 1.634×105 2.21×105 1.528×105 –26.04 –30.86
    33 8 3 E1 6.666×1011 6.55×1011 6.680×1011 1.77 1.98
    34 13 3 E1 2.183×1011 2.21×1011 2.194×1011 –1.20 –0.71
    35 8 6 E1 3.432×106 3.43×106 3.198×106 0.05 –6.77
    36 13 6 E1 6.950×1010 6.96×1010 6.955×1010 –0.14 –0.08
    37 13 11 E1 1.052×106 1.51×106 9.843×105 –30.36 –34.81
    38 11 8 E1 3.865×109 3.82×109 3.851×109 1.18 0.81
    39 14 8 E1 9.201×109 9.202×109
    40 14 13 E1 6.379 3.394
    41 15 8 E1 1.380×1011 1.381×1011
    42 15 13 E1 1.786×102 1.035×102
    43 7 1 E2 7.367×107 7.356×107
    44 12 1 E2 1.208×107 1.208×107
    45 7 4 E2 36.65 36.27
    46 12 4 E2 4.721×106 4.718×106
    47 12 9 E2 6.189 6.128
    48 8 1 E2 7.372×107 7.361×107
    49 13 1 E2 1.212×107 1.212×107
    50 8 4 E2 37.81 37.40
    51 13 4 E2 4.722×106 4.720×106
    52 13 9 E2 6.386 6.321
    53 3 2 E2 1.824×10–6 1.755×10–6
    54 6 2 E2 1.263×107 1.261×107
    55 11 2 E2 5.390×106 5.420×106
    56 6 5 E2 1.544×10–7 1.468×10–7
    57 11 5 E2 1.329×106 1.328×106
    58 11 10 E2 2.373×10–8 2.187×10–8
    59 14 2 E2 4.816×107 4.180×107
    60 14 5 E2 5.013×106 4.997×106
    61 14 10 E2 7.343×10–3 6.368×10–3
    62 9 7 E2 4.852×105 4.852×105
    63 12 7 E2 8.342×105 8.342×105
    64 8 7 E2 6.385×10–11 6.073×10–11
    65 13 7 E2 2.383×105 2.383×105
    66 13 12 E2 1.368×10–11 1.291×10–11
    67 5 3 E2 2.521×107 2.517×107
    68 10 3 E2 1.071×107 1.076×107
    69 10 6 E2 2.655×106 2.654×106
    70 6 3 E2 1.259×107 1.257×107
    71 11 3 E2 5.359×106 5.384×106
    72 11 6 E2 1.326×106 1.326×106
    73 14 3 E2 1.376×107 1.374×107
    74 14 6 E2 1.422×106 1.418×106
    75 14 11 E2 1.491×10–3 1.286×10–3
    76 15 3 E2 6.186×107 6.180×107
    77 15 6 E2 6.405×106 6.384×106
    78 15 11 E2 7.114×10–3 6.118×10–3
    79 9 8 E2 7.277×105 7.278×105
    80 12 8 E2 3.572×105 3.572×105
    81 13 8 E2 9.526×105 9.526×105
    82 15 14 E2 1.519×10–13 1.057×10–13
    83 4 1 M1 31.71 29.21
    84 9 1 M1 26.58 24.18
    85 9 4 M1 2.899×10–1 2.728×10–1
    86 7 1 M1 1.639 1.625
    87 12 1 M1 9.801×10–1 9.693×10–1
    88 7 4 M1 6.509×10–6 6.565×10–6
    89 12 4 M1 5.915×10–3 5.842×10–3
    90 12 9 M1 2.665×10–7 2.683×10–7
    91 5 2 M1 6.256 5.847
    92 10 2 M1 4.903 4.585
    93 10 5 M1 7.465×10–2 7.429×10–2
    94 3 2 M1 5.674×10–1 5.534×10–1
    95 6 2 M1 41.41 39.89
    96 11 2 M1 21.22 20.35
    97 6 5 M1 1.456×10–2 1.421×10–2
    98 11 5 M1 2.307 2.258
    99 11 10 M1 1.084×10–3 1.060×10–3
    100 9 7 M1 7.338×10–5 8.191×10–5
    101 12 7 M1 1.849×10–1 1.841×10–1
    102 8 7 M1 5.203×10–4 5.012×10–4
    103 13 7 M1 1.458×10–1 1.410×10–1
    104 13 12 M1 3.887×10–5 3.748×10–5
    105 5 3 M1 1.550×102 1.543×102
    106 10 3 M1 90.07 89.89
    107 10 6 M1 6.361 6.287
    108 6 3 M1 42.40 43.34
    109 11 3 M1 33.34 34.06
    110 11 6 M1 5.226×10–1 5.291×10–1
    111 14 3 M1 4.582×10–1 4.541×10–1
    112 14 6 M1 1.620×10–2 1.619×10–2
    113 14 11 M1 1.431×10–9 1.290×10–9
    114 12 8 M1 5.510×10–1 5.408×10–1
    115 13 8 M1 6.109×10–1 6.116×10–1
    116 15 14 M1 6.636×10–6 5.095×10–6
    注: a)表格中数据 $ {a}{{\mathrm{E}}}\pm {b}={a}\times{10}^{\pm{b}} $, 下同; b) NIST[26]数据库收录数据; c)文献[11]使用MCDF+CI方法的计算结果.
    DownLoad: CSV

    表 7  Mo39+跃迁速率(单位:$ {\mathrm{s}}^{{-1}} $)计算结果及其与其他理论结果[12]的比较

    Table 7.  Comparison of transition rates (in $ {\mathrm{s}}^{{-1}} $) calculations for Mo39+ with other Ref. [12].

    跃迁编号上能级编号下能级编号跃迁类型当前计算NIST a)其他理论结果b)与NIST的相对差异
    当前计算其他理论结果
    121E13.549×1093.54×109
    251E16.057×10136.06×1013
    3101E12.625×1013
    454E14.656×108
    5104E18.009×1012
    6109E11.085×108
    731E15.448×10105.48×1010
    861E15.520×10135.52×1013
    9111E12.466×1013
    1064E17.999×109
    11114E17.165×1012
    12119E11.949×109
    1342E16.644×10126.64×1012
    1492E12.681×1012
    1595E11.867×1012
    1672E11.442×10141.44×1014
    17122E14.742×1013
    1875E12.118×109
    19125E11.493×1013
    201210E16.753×108
    21107E11.211×1012
    22117E19.602×1010
    23147E13.331×1013
    241412E18.822×106
    2543E11.547×10131.55×1013
    2693E16.168×1012
    2796E14.307×1012
    2873E12.770×1013
    29123E18.805×1012
    3076E12.566×106
    31126E13.034×1012
    321211E18.156×105
    3383E11.663×10141.66×1014
    34133E15.364×1013
    3586E12.143×108
    36136E11.794×1013
    371311E16.846×107
    38118E19.245×1011
    39148E12.344×1012
    401413E122.52
    41158E13.528×1013
    421513E11.295×106
    4371E22.551×1011
    44121E23.348×1010
    4574E29.550×103
    46124E21.786×1010
    47129E21.729×103
    4881E22.584×1011
    49131E23.573×1010
    5084E22.102×104
    51134E21.797×1010
    52139E23.821×103
    5332E27.513×103
    5462E25.155×1010
    55112E22.269×1010
    5665E26.462×102
    57115E25.488×109
    581110E297.35
    59142E21.960×1011
    60145E22.172×1010
    611410E23.443×102
    6297E21.898×109
    63127E23.444×109
    6487E22.786×10–1
    65137E29.830×108
    661312E26.059×10–2
    6753E21.003×1011
    68103E24.105×1010
    69106E21.083×1010
    7063E24.946×1010
    71113E22.108×1010
    72116E25.347×109
    73143E25.576×1010
    74146E25.558×109
    751411E25.488×10–1
    76153E22.483×1011
    77156E22.528×1010
    781511E28.617
    7998E22.856×109
    80128E21.457×109
    81138E23.883×109
    821514E24.660×10–4
    8341M12.594×107
    8491M12.189×107
    8594M12.650×105
    8671M11.438×106
    87121M18.373×105
    8874M11.138
    89124M16.242×103
    90129M15.005×10–2
    9152M16.440×106
    92102M15.038×106
    93105M18.012×104
    9432M19.297×106
    9562M14.442×107
    96112M12.269×107
    9765M12.443×105
    98115M12.493×106
    991110M11.825×104
    10097M180.40
    101127M11.985×105
    10287M18.877×103
    103137M11.564×105
    1041312M16.709×102
    10553M11.540×108
    106103M18.971×107
    107106M16.495×106
    10863M13.961×107
    109113M13.100×107
    110116M15.186×105
    111143M14.714×105
    112146M11.633×104
    1131411M13.355×10–4
    114128M15.801×105
    115138M16.412×105
    1161514M187.54
    注: a) NIST[26]数据库当前对该元素跃迁速率数据无收录; b)文献[12]使用MCDF+CI方法的计算结果.
    DownLoad: CSV

    表 6  Cr21+跃迁速率(单位: $ {\mathrm{s}}^{{-1}} $)计算结果及其与NIST[26]数据及其他理论计算结果[10]的比较

    Table 6.  Comparison of transition rates (in $ {{{\mathrm{s}}}}^{{-1}} $) calculations for Cr21+ with NIST[26] data and other Ref. [10].

    跃迁编号上能级编号下能级编号跃迁类型当前计算NIST a)其他理论结果b)与NIST的相对差异/%
    当前计算其他理论结果
    121E11.642×1091.65×1091.660×109–0.510.61
    251E15.277×10125.28×10125.260×1012–0.06–0.38
    3101E12.325×10122.5×10122.319×1012–7.00–7.24
    454E12.142×1082.160×108
    5104E16.891×10117.100×10116.880×1011–2.95–3.10
    6109E15.015×1075.060×107
    731E13.270×1093.29×1093.300×109–0.620.30
    861E15.129×10125.13×10125.110×1012–0.02–0.39
    9111E12.279×10122.5×10122.270×1012–8.83–9.20
    1064E14.428×1084.450×108
    11114E16.661×10117.100×10116.650×1011–6.18–6.34
    12119E11.054×1081.060×108
    1342E16.456×10116. ×10116.427×10117.607.12
    1492E12.585×10112.576×1011
    1595E11.800×10111.801×1011
    1672E11.296×10131.29×10131.300×10130.500.78
    17122E14.220×10124.1×10124.230×10122.933.17
    1875E13.793×1073.730×107
    19125E11.366×10121.4×10121.370×1012–2.43–2.14
    201210E11.183×1071.160×107
    21107E19.770×10109.759×1010
    22117E19.101×1099.090×109
    23147E13.027×10123.030×1012
    241412E13.741×1043.590×104
    2543E11.350×10121.3×10121.344×10123.883.38
    2693E15.386×10115.353×1011
    2796E13.754×10113.754×1011
    2873E12.562×10122.6×10122.320×1012–1.48–10.77
    29123E18.256×10117.9×10118.030×10114.511.65
    3076E11.502×1061.461×106
    31126E12.745×10112.7×10112.745×10111.651.67
    321211E14.591×1054.466×105
    3383E11.537×10131.54×10131.540×1013–0.190.00
    34133E14.974×10124.9×10124.990×10121.521.84
    3586E11.662×1071.630×107
    36136E11.639×10121.7×10121.640×1012–3.58–3.53
    371311E15.139×1065.010×106
    38118E18.356×10108.349×1010
    39148E12.152×10112.152×1011
    401413E119.6416.90
    41158E13.231×10123.230×1012
    421513E18.590×1038.040×103
    4371E27.117×1097.113×109
    44121E29.610×1089.618×108
    4574E22.242×1022.224×102
    46124E24.891×1084.890×108
    47129E239.0038.65
    4881E27.144×1097.140×109
    49131E29.797×1089.806×108
    5084E22.902×1022.879×102
    51134E24.900×1084.899×108
    52139E250.6450.17
    5332E24.938×10–14.917×10–1
    5462E21.408×1091.408×109
    55112E26.093×1086.122×108
    5665E24.167×10–24.114×10–2
    57115E21.493×1081.493×108
    581110E26.296×10–36.130×10–3
    59142E25.450×1095.446×109
    60145E25.589×1085.585×108
    611410E23.995×10–13.805×10–1
    6297E25.199×1075.199×107
    63127E29.476×1079.476×107
    6487E21.884×10–51.872×10–5
    65137E22.707×1072.707×107
    661312E24.064×10–64.010×10–6
    6753E22.795×1092.794×109
    68103E21.183×1091.186×109
    69106E22.974×1082.973×108
    7063E21.390×1091.390×109
    71113E25.952×1085.965×108
    72116E21.480×1081.480×108
    73143E21.555×1091.554×109
    74146E21.545×1081.544×108
    751411E21.221×10–21.142×10–2
    76153E26.974×1096.972×109
    77156E26.973×1086.968×108
    781511E28.422×10–27.921×10–2
    7998E27.807×1077.806×107
    80128E24.045×1074.045×107
    81138E21.079×1081.078×108
    821514E23.185×10–83.199×10–8
    8341M16.556×1046.418×104
    8491M15.548×1045.416×104
    8594M16.576×1026.488×102
    8671M13.608×1033.594×103
    87121M12.117×1032.106×103
    8874M12.540×10–32.558×10–3
    89124M115.4215.34
    90129M11.094×10–41.099×10–4
    9152M11.541×1041.484×104
    92102M11.210×1041.164×104
    93105M11.910×1021.877×102
    9432M16.737×1036.76×1036.699×103–0.33–0.90
    9562M11.044×1051.029×105
    96112M15.354×1045.263×104
    9765M11.747×1021.737×102
    98115M15.859×1035.820×103
    991110M113.0612.98
    10097M11.938×10–12.052×10–1
    101127M14.925×1024.915×102
    10287M16.5966.552
    103137M13.830×1023.821×102
    1041312M14.957×10–14.921×10–1
    10553M13.847×1053.855×105
    106103M12.239×1052.248×105
    107106M11.598×1041.595×104
    10863M11.033×1051.045×105
    109113M18.104×1048.197×104
    110116M11.318×1031.325×103
    111143M11.198×1031.193×103
    112146M141.1741.19
    1131411M17.411×10–77.092×10–7
    114128M11.449×1031.449×103
    115138M11.620×1031.622×103
    1161514M16.561×10–26.579×10–2
    注: a) NIST[26]数据库收录数据; b)文献[10]使用MCDF+CI方法的计算结果.
    DownLoad: CSV
    Baidu
  • [1]

    Hu Z M, Xiong G, He Z C, Yang Z H, Numadate N, Huang C W, Yang J M, Yao K, Wei B R, Zou Y M, Wu C S, Ma Y L, Wu Y, Gao X, Nakamura N 2022 Phys. Rev. A 105 L030801Google Scholar

    [2]

    Wu C S, Xie L Y, Hu Z M, Gao X 2020 J. Quant. Spectrosc. Ra. 246 106912Google Scholar

    [3]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 2764Google Scholar

    [4]

    Doschek G A, Feldman U 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001Google Scholar

    [5]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nat. Phys. 5 821Google Scholar

    [6]

    Del Zanna G, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar

    [7]

    Griem H R 1986 Principles of Plasma Spectroscopy (Dordrecht: Springer Netherlands) pp885-910

    [8]

    Foot C J 2005 Atomic physics (New York: Oxford university press

    [9]

    Aggarwal K M, Keenan F P, Heeter R F 2010 Phys. Scripta 81 015303Google Scholar

    [10]

    Aggarwal K M, Keenan F P 2012 Atom. Data Nucl. Data 98 1003Google Scholar

    [11]

    Aggarwal K M, Keenan F P 2013 Atom. Data Nucl. Data 99 156Google Scholar

    [12]

    Khatri I, Goyal A, Aggarwal S, Singh A K, Mohan M 2016 Radiat. Phys. Chem. 123 46Google Scholar

    [13]

    刘尚宗, 颉录有, 丁晓彬, 董晨钟 2012 61 093106Google Scholar

    Liu S Z, Xie L Y, Ding X B, Dong C Z 2012 Acta Phys. Sin. 61 093106Google Scholar

    [14]

    胡木宏, 刘博文, 徐恩慧, 马玉龙, 吴勇 2020 原子与分子 37 819

    Hu M H, Liu B W, Xu E H, Ma Y L, Wu Y 2020 J. Atomic Mol. Phys. 37 819

    [15]

    Gu M F 2005 Atom. Data Nucl. Data 89 267Google Scholar

    [16]

    Sapirstein J, Cheng K T 2011 Phys. Rev. A 83 012504Google Scholar

    [17]

    Yerokhin V A, Surzhykov A, Müller A 2017 Phys. Rev. A 96 042505Google Scholar

    [18]

    Ge Z M, Wang Z W, Zhou Y J, He L M, Liu G G 2003 Chin. Phys. B 12 488Google Scholar

    [19]

    Wang Z W, Zhu X W, Chung K T 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3915Google Scholar

    [20]

    Hu M H, Wang Z W, Zeng F, Wang T, Wang J 2011 Chinese Phys. B 20 083101Google Scholar

    [21]

    Wang Z W, Zhu X W, Chung K T 1992 Phys. Rev. A 46 6914Google Scholar

    [22]

    Wang Z W, Zhu X W, Chung K T 1993 Phys. Scripta 47 65Google Scholar

    [23]

    Wang L M, Liu T T, Yang W Q, Yan Z C 2023 Chin. Phys. B 32 033102Google Scholar

    [24]

    Cai J, Yu W W, Zhang N 2014 Chin. Phys. Lett. 31 093101Google Scholar

    [25]

    Nahar S N 2002 Astron. Astrophys. 389 716Google Scholar

    [26]

    NIST Atomic Spectra Database (ver. 5.12), Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https://physics.nist.gov/asd [2025-4-11]

    [27]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425Google Scholar

    [28]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [29]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer-Verlag

    [30]

    刘博文 2021 硕士学位论文 (大连: 辽宁师范大学)

    Liu B W 2021 M. S. Thesis (Dalian: Liaoning Normal University

    [31]

    Martin G A, Wiese W L 1976 J. Phys. Chem. Ref. Data 5 537Google Scholar

  • [1] Wei Xiang-Jie, Sun Deng, Wang Li-Ming, Yan Zong-Chao. High precision calculations of Fermi contact term for lithium-like ions. Acta Physica Sinica, doi: 10.7498/aps.71.20220923
    [2] Wen Da-Dong, Deng Yong-He, Dai Xiong-Ying, Wu An-Ru, Tian Ze-An. Atomic-level mechanism for isothermal crystallization in supercooled liquid tantalum. Acta Physica Sinica, doi: 10.7498/aps.69.20200665
    [3] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.67.20180992
    [4] Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin. Theoretical study of the spectra and radiative transition properties of 6Li32S. Acta Physica Sinica, doi: 10.7498/aps.65.033101
    [5] Liu Shang-Zong, Xie Lu-You, Ding Xiao-Bin, Dong Chen-Zhong. The effect of relativity on the structures and transition properties of Li-like ions. Acta Physica Sinica, doi: 10.7498/aps.61.093106
    [6] Lu Shuo, Zhang Yue, Shang Jia-Xiang. First principles study on structure and property of Si2 CN4(010) surface. Acta Physica Sinica, doi: 10.7498/aps.60.027302
    [7] Guo Gu-Qing, Yang Liang, Zhang Guo-Qing. Atomic structure of Zr48Cu45Al7 bulk metallic glass. Acta Physica Sinica, doi: 10.7498/aps.60.016103
    [8] Li Bo-Wen, Jiang Jun, Dong Chen-Zhong, Wang Jian-Guo, Ding Xiao-Bin. Influence of plasma effect on the energy levels and transition probabilities of hydrogen-like ions. Acta Physica Sinica, doi: 10.7498/aps.58.5274
    [9] Liu Fu, Zhou Ji-Cheng, Tan Xiao-Chao. First-principles study on 3C-SiC(001)-(2×1)surface atomic structure and electronic structure. Acta Physica Sinica, doi: 10.7498/aps.58.7821
    [10] Chang Zhi-Wen, Wang Qing-Lin, Luo You-Hua. Effects of spin multiplicity on atomic structure of titanium trimer. Acta Physica Sinica, doi: 10.7498/aps.55.4553
    [11] Li Jie, Dong Chen-Zhong, Xie Lu-You. Effects of relaxation induced by excitation (or ionization) of inner subshell electrons on the wave functions and transition probabilities. Acta Physica Sinica, doi: 10.7498/aps.55.655
    [12] Xu Peng-Shou, Li Yong-Hua, Pan Hai-Bin. First principle study on β-SiC(001)-(2×1) surface structure. Acta Physica Sinica, doi: 10.7498/aps.54.5824
    [13] Li Yong-Hua, Xu Peng-Shou, Pan Hai-Bin, Xu Fa-Qiang, Xie Chang-Kun. First-principle study on GaN(1010) surface structure. Acta Physica Sinica, doi: 10.7498/aps.54.317
    [14] Jiang Min-Hao, Meng Xu-Jun. A Hartree-Fock-Slater-Boltzmann-Saha method for detailed atomic structure and equation of state of plasmas. Acta Physica Sinica, doi: 10.7498/aps.54.587
    [15] Ding Xiao-Bin, Dong Chen-Zhong. Theoretical predictions on the low-lying excitation structure of super-heavy element bohrium (Z=107). Acta Physica Sinica, doi: 10.7498/aps.53.3326
    [16] Ji Lu-You, Dong Chen-Zhong, Ma Xin-Wen, Yuan Ping, Yan Jun, Qu Yi-Zhi. . Acta Physica Sinica, doi: 10.7498/aps.51.1965
    [17] MENG XU-JUN, ZONG XIAO-PING, BAI YUN, SUN YONG-SHENG, ZHANG JING-LIN. SELF-CONSISTENT CALCULATION OF ATOMIC STRUCTURE FOR MIXTURE. Acta Physica Sinica, doi: 10.7498/aps.49.2133
    [18] HAN LI-HONG, GOU BING-CONG, WANG FEI. RADIATIVE TRANSITION OF TRIPLY EXCITED 2p2np4So STATES TO THE ls2pmp4P STATES IN LITHIUM-LIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.49.2139
    [19] WANG JIAN-GUO, TONG XIAO-MIN, LI JIA-MING. RADIATIVE TRANSITION OF Rb ATOM BETWEEN INITIAL AND FINAL CHANNELS. Acta Physica Sinica, doi: 10.7498/aps.45.13
    [20] CHENG HUAN-SHENG, CUI ZHI-XIANG, XU HONG-JIE, YAO XIAO-WEI, YANG FU-JIA. STUDIES OF SURFACE LAYER ATOMIC STRUCTURE OF Al(100) BY MeV ION SCATTERING. Acta Physica Sinica, doi: 10.7498/aps.38.1981
Metrics
  • Abstract views:  112
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2025
  • Accepted Date:  14 July 2025
  • Available Online:  17 July 2025
  • /

    返回文章
    返回
    Baidu
    map