搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类锂离子体系自旋四重态费米接触项的精密计算

魏向杰 孙邓 王黎明 严宗朝

引用本文:
Citation:

类锂离子体系自旋四重态费米接触项的精密计算

魏向杰, 孙邓, 王黎明, 严宗朝

High precision calculations of Fermi contact term for lithium-like ions

Wei Xiang-Jie, Sun Deng, Wang Li-Ming, Yan Zong-Chao
PDF
HTML
导出引用
  • 费米接触项与原子超精细结构常数有密切关系, 往往对原子能级的超精细劈裂起主要贡献. 波函数在原点处的行为以及电子之间的关联效应是影响费米接触项计算精度的两个主要因素. 对于一般的原子体系来说, 费米接触项的高精度计算不是一件容易的工作. 本文利用Hylleraas坐标下的Rayleigh-Ritz变分法求解了锂原子和类锂离子体系(Z = 4—10)自旋四重态$ {\text{1s2s3s}}{\;^{\text{4}}}{\text{S}} $, $ {\text{1s2s4s}}{\;^{\text{4}}}{\text{S}} $$ {\text{1s2s2p}}{\;^{\text{4}}}{\text{P}} $的薛定谔方程, 得到的非相对论变分能量收敛精度达到10–13. 根据所得到的高精度变分波函数, 计算了这些体系的费米接触项, 并研究了原子核的有限质量对结果的影响. 费米接触项的精度达到了10–10. 本文结果可以作为其他理论方法的参考基准, 同时也为相关的实验研究提供了参考数据.
    The Fermi contact term is closely related to the atomic hyperfine constants. It often dominates the hyperfine splittings. The quality of the wave function near the origin and the correlation effect between electrons are two main factors which affect the numerical accuracy of the Fermi contact term. It is not an easy task to compute the Fermi contact term with high precision for a general atom. In the present paper, the Schrödinger equations of the $ {\text{1s2s3s}}{\;^{\text{4}}}{\text{S}} $, $ {\text{1s2s4s}}{\;^{\text{4}}}{\text{S}} $ and $ {\text{1s2s2p}}{\;^{\text{4}}}{\text{P}} $states of lithium atom and lithium-like ions (Z = 4–10) are solved by using Rayleigh-Ritz variational method in Hylleraas coordinates. The variational energiesenergy converges to an accuracy of 10–13. Then the Fermi contact terms for these states are calculated based on the high precision variation wave functions. In particular, the Drachman global method are adopted in order to improve the convergence of the Fermi contact term. The effect of finite nuclear mass on Fermi contact term, i.e. the first-order mass polarization coefficient is also calculated. The Fermi contact term converges to an accuracy of 10–10, which is the most accurate result at present. Our results can be used as a reference for other theoretical methods or relevant experimental studies.
      通信作者: 王黎明, wlm@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774080)资助的课题.
      Corresponding author: Wang Li-Ming, wlm@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774080).
    [1]

    Lamb W E, Retherford R C 1947 Phys. Rev. 72 241Google Scholar

    [2]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93 025010Google Scholar

    [3]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [4]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013 Rev. Mod. Phys. 85 1383Google Scholar

    [5]

    Yan Z C, Nortershauser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002Google Scholar

    [6]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001Google Scholar

    [7]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [8]

    Hiller J, Sucher J, Feinberg G 1978 Phys. Rev. A 18 2399 (Errata 1980 Phys. Rev. A 22 2293; 1979 Phys. Rev. A 20 378)

    [9]

    Drachman R 1981 J. Phys. B:At. Mol. Phys. 14 2733Google Scholar

    [10]

    Yan Z C, McKenzie D, Drake G W F 1996 Phys. Rev. A 54 1322Google Scholar

    [11]

    Wang L M, Yan Z C, Qiao H X, Drake G W F 2012 Phys. Rev. A 85 052513Google Scholar

    [12]

    Yan Z C 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3569Google Scholar

    [13]

    King F W 2013 Int. J. Quantum Chem. 113 2534Google Scholar

    [14]

    Zhuo L, Gou B C, Zhu J J 2009 Eur. Phys. J. D. 54 1Google Scholar

    [15]

    Zhuo L, Chen F, Gou B C 2010 Int. J. Quantum Chem. 110 1108Google Scholar

    [16]

    Drake G W F 2006 Springer Handbook of Atomic, Molecular, and Optical Physics (New York: Springer Science & Business Media) pp199–219

    [17]

    王黎明, 周挽平, 严宗朝 2021 中国科学: 物理学 力学 天文学 51 074203Google Scholar

    Wang L M, Zhou W P, Yan Z C 2021 Sci. Sin-Phys. Mech. Astron., 51 074203Google Scholar

    [18]

    Barrois R, Lüchow A, Kleindienst H 1996 Chem. Phys. Lett. 249 249Google Scholar

    [19]

    Yan Z C 2003 J. Phys. B:At. Mol. Opt. Phys. 36 2093Google Scholar

    [20]

    Barrois R, Bekavac S, Kleindienst H 1997 Chem. Phys. Lett. 268 531Google Scholar

    [21]

    Glass R 1978 J. Phys. B:At. Mol. Phys. 11 3469Google Scholar

  • 表 1  锂原子${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$态的非相对论变分能量的收敛情况, 核质量取为无穷大

    Table 1.  Study of the convergence of nonrelativistic variational energies of the ${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$ state of lithium atom, suppose the mass of the nucleus is infinite.

    $\varOmega$Number of terms$E(\varOmega)$/a.u.$R(\varOmega)$
    4210–5.212 747 426 455 68
    5462–5.212 748 209 017 03
    6924–5.212 748 244 064 1222.33
    71716–5.212 748 246 979 6112.02
    83003–5.212 748 247 204 7012.95
    95000–5.212 748 247 216 7318.71
    108000–5.212 748 247 223 541.77
    1112370–5.212 748 247 224 705.87
    1218560–5.212 748 247 224 7189.09
    1327130–5.212 748 247 224 840.10
    $\infty $–5.212 748 247 224 8(2)
    Yan[19]$\infty $–5.212 748 247 225(5)
    King[13]1904–5.212 748 246 6
    下载: 导出CSV

    表 2  类锂离子体系${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$态的非相对论能量, 核质量取为无穷大 (原子单位)

    Table 2.  Nonrelativistic energies of the ${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$and${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$states of lithium-like ions, suppose the mass of the nucleus is infinite (in a.u.).

    Ion${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
    ${\text{Li}}$–5.212 748 247 224 8(2)
    –5.212 748 247 225(5)a
    –5.158 393 473 137 2(4)
    –5.158 393 473 2(2)a
    –5.368 010 154 030 5(2)
    –5.368 010 153 9(2)a
    ${\text{B} }{ {\text{e} }^{\text{+} } }$–9.619 844 613 890 47(2)
    –9.619 844 58(3)b
    –9.462 507 112 198 5(2)
    –9.462 507 0(2)b
    –10.066 652 477 404 7(4)
    –10.066 652(4)c
    ${{\text{B}}^{2 + }}$–15.389 482 739 000 99(1)
    –15.389 482 7(0)b
    –15.136 079 140 469(2)
    –15.136 078(8)b
    –16.267 610 175 163 7(4)
    –16.267 610(1)c
    ${{\text{C}}^{3 + }}$–22.520 800 619 349 34(1)
    –22.520 800 5(8)b
    –22.194 572 767 231(2)
    –22.194 572(4)b
    –23.969 555 014 323 5(3)
    –23.969 555(0)c
    ${{\text{N}}^{4 + }}$–31.013 515 458 020 68(2)
    –31.013 515 4(3)b
    –30.615 962 427 558(2)
    –30.615 962(2)b
    –33.172 011 265 984 3(3)
    –33.172 011(2)c
    ${{\text{O}}^{5 + }}$–40.867 505 629 631 74(1)
    –40.867 505 5(9)b
    –40.399 023 507 082(4)
    –40.399 023(2)b
    –43.874 766 296 947 8(4)
    –43.874 766(2)c
    ${{\text{F}}^{6 + }}$–52.082 709 993 193 28(2)
    –52.082 709 9(6)b
    –51.543 484 487 834(1)
    –51.543 484(2)b
    –56.077 710 886 696 3(4)
    –56.077 710(8)c
    ${\text{N}}{{\text{e}}^{7 + }}$–64.659 094 417 708 25(1)
    –64.659 094 3(8)b
    –64.049 233 634 687(2)
    –64.049 233(3)b
    –69.780 783 217 935 2(2)
    –69.780 783(2)c
    注: a, 文献[19]; b, 文献[18]; c, 文献[20].
    下载: 导出CSV

    表 3  类锂离子体系${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$态的质量极化系数(原子单位)

    Table 3.  Mass polarization coefficients of the ${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$and ${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$states of lithium-like ions (in a.u.)

    Ion${\varepsilon _1}$${\varepsilon _2}$${\varepsilon _3}$
    ${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$
    ${\text{Li}}$–0.019 098 689 45(3)–0.346 258 57(4)0.174 909 1(5)
    ${\text{B} }{ {\text{e} }^{\text{+} } }$–0.028 190 435 40(2)–0.865 722 62(2)0.897 689 5(2)
    ${{\text{B}}^{2 + }}$–0.033 290 376 39(3)–1.642 090 43(4)2.614 098 9(2)
    ${{\text{C}}^{3 + }}$–0.034 289 481 61(2)–2.698 194 80(6)5.879 648 9(1)
    ${{\text{N}}^{4 + }}$–0.031 162 328 61(2)–4.056 337 23(2)11.361 993 82(3)
    ${{\text{O}}^{5 + }}$–0.023 902 016 05(6)–5.738 638 37(2)19.842 156(2)
    ${{\text{F}}^{6 + }}$–0.012 506 894 13(5)–7.767 142 43(4)32.215 000(3)
    ${\text{N}}{{\text{e}}^{7 + }}$0.003 023 055 68(3)–10.163 856 84(2)49.489 432 4(2)
    ${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$
    ${\text{Li}}$–0.018 619 468 74(3)–0.272 708 10(3)0.061 978 4(3)
    ${\text{B} }{ {\text{e} }^{\text{+} } }$0.035 099 392 18(3)–2.306 028 72(2)35.296 396(2)
    ${{\text{B}}^{2 + }}$1.242 706 153 8(3)–5.493 869 41(3)–41.733 915(2)
    ${{\text{C}}^{3 + }}$2.125 081 744 6(3)–5.285 653 44(3)–13.261 767 4(3)
    ${{\text{N}}^{4 + }}$3.138 461 490 6(2)–6.795 076 43(3)–15.010 263 8(2)
    ${{\text{O}}^{5 + }}$4.330 570 648 1(3)–8.699 185 86(2)–22.191 657 9(2)
    ${{\text{F}}^{6 + }}$5.707 148 244 9(2)–10.854 895 13(2)–33.822 354 0(1)
    ${\text{N}}{{\text{e}}^{7 + }}$7.269 691 423 1(3)–13.212 273 43(5)–50.532 032(2)
    ${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
    ${\text{Li}}$0.197 556 864 869(4)–0.743 722 190(3)0.462 807 90(2)
    ${\text{B} }{ {\text{e} }^{\text{+} } }$0.532 973 840 148(7)–1.776 435 078(2)1.072 866 24(5)
    ${{\text{B}}^{2 + }}$1.026 077 002 714(1)–3.219 212 106(3)1.903 522 30(1)
    ${{\text{C}}^{3 + }}$1.675 951 877 937(6)–5.070 384 099(3)2.956 052 91(3)
    ${{\text{N}}^{4 + }}$2.482 252 239 327(2)–7.329 612 081(3)4.231 693 02(2)
    ${{\text{O}}^{5 + }}$3.444 825 571 973(3)–9.996 821 053(2)5.731 157 12(2)
    ${{\text{F}}^{6 + }}$4.563 595 540 943(6)–13.071 999 313(5)7.454 857 77(5)
    ${\text{N}}{{\text{e}}^{7 + }}$5.838 520 069 099(5)–16.555 151 141(2)9.403 043 87(2)
    下载: 导出CSV

    表 4  锂原子${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$态的费米接触项的收敛情况, 核质量取为无穷大

    Table 4.  Study of the convergence of nonrelativistic variational energies of the${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$ state of lithium atom, suppose the mass of the nucleus is infinite.

    $\varOmega$Number of terms${f_{\text{c}}}$/a.u.$R\left( \varOmega \right)$
    4210114.945 400 79
    5462114.945 834 87
    6924114.945 803 15–13.68
    71716114.945 820 05–1.88
    83003114.945 821 978.78
    95000114.945 821 19–2.45
    108000114.945 820 994.04
    1112370114.945 821 02–7.78
    1218560114.945 821 028.02
    1327130114.945 821 01–0.26
    $\infty $114.945 821 01(3)
    Yan[12]$\infty $114.945 823(2)
    King[13]1904114.945 79
    下载: 导出CSV

    表 5  类锂离子体系${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$态的费米接触项, 核质量取为无穷大

    Table 5.  Fermi contact terms of ${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$ and ${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$states of lithium-like ions, suppose the mass of the nucleus is infinite.

    Ion${f_{\text{c}}}$/a.u.
    ${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
    ${\text{Li}}$114.945 821 01(3)
    114.945 823(2)a
    114.756 210 17(5)
    114.756 21(2)a
    112.298 053(6)
    112.269 8b
    ${\text{B} }{ {\text{e} }^{\text{+} } }$277.186 422 61(3)273.548 196 54(2)270.128 559(2)
    ${{\text{B}}^{2 + }}$547.507 013 93(5)498.901 685 71(3)533.170 916(3)
    ${{\text{C}}^{3 + }}$953.552 047 46(4)859.720 632 46(5)928.427 902(4)
    ${{\text{N}}^{4 + }}$1522.968 426 9(2)1366.477 417 5(2)1482.900 739(3)
    1482.85c
    ${{\text{O}}^{5 + }}$2283.403 624 4(2)2042.089 145 6(3)2223.589 964(6)
    2223.711d
    ${{\text{F}}^{6 + }}$3262.505 305 2(2)2910.646 989 8(5)3177.495 846(5)
    3177.40c
    ${\text{N}}{{\text{e}}^{7 + }}$4487.921 213 6(2)3996.354 065 8(2)4371.618 515(2)
    4371.347d
    注: a, 文献[12]; b, 文献[21]; c, 文献[15]; d, 文献[14].
    下载: 导出CSV

    表 6  类锂离子${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$态的费米接触项的一阶质量极化系数

    Table 6.  First-order mass polarization coefficients of Fermi contact terms of ${\text{1s2s3s}}{\;^{\text{4}}}{\text{S}}$, ${\text{1s2s4s}}{\;^{\text{4}}}{\text{S}}$ and ${\text{1s2s2p}}{\;^{\text{4}}}{\text{P}}$states of lithium-like ions.

    Ion一阶质量极化系数$ f_{\text{c}}^1 $/a.u.
    ${\text{1s2s3s} }{\;^{\text{4} } }{\text{S} }$${\text{1s2s4s} }{\;^{\text{4} } }{\text{S} }$${\text{1s2s2p} }{\;^{\text{4} } }{\text{P} }$
    ${\text{Li}}$1.895 4(2)0.790 2(5)4.832 8(3)
    ${\text{B} }{ {\text{e} }^{\text{+} } }$9.284 0(3)103.777(2)13.732(1)
    ${{\text{B}}^{2 + }}$27.430 7(2)154.971(2)28.485(4)
    ${{\text{C}}^{3 + }}$63.325 0(3)41.512(2)50.36(3)
    ${{\text{N}}^{4 + }}$125.663(3)–0.590 2(3)80.68(2)
    ${{\text{O}}^{5 + }}$224.854(2)–60.458(4)120.73(3)
    ${{\text{F}}^{6 + }}$373.014(2)–156.223(3)171.84(2)
    ${\text{N}}{{\text{e}}^{7 + }}$583.972(2)–302.256(5)235.29(2)
    下载: 导出CSV
    Baidu
  • [1]

    Lamb W E, Retherford R C 1947 Phys. Rev. 72 241Google Scholar

    [2]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93 025010Google Scholar

    [3]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [4]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013 Rev. Mod. Phys. 85 1383Google Scholar

    [5]

    Yan Z C, Nortershauser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002Google Scholar

    [6]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001Google Scholar

    [7]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [8]

    Hiller J, Sucher J, Feinberg G 1978 Phys. Rev. A 18 2399 (Errata 1980 Phys. Rev. A 22 2293; 1979 Phys. Rev. A 20 378)

    [9]

    Drachman R 1981 J. Phys. B:At. Mol. Phys. 14 2733Google Scholar

    [10]

    Yan Z C, McKenzie D, Drake G W F 1996 Phys. Rev. A 54 1322Google Scholar

    [11]

    Wang L M, Yan Z C, Qiao H X, Drake G W F 2012 Phys. Rev. A 85 052513Google Scholar

    [12]

    Yan Z C 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3569Google Scholar

    [13]

    King F W 2013 Int. J. Quantum Chem. 113 2534Google Scholar

    [14]

    Zhuo L, Gou B C, Zhu J J 2009 Eur. Phys. J. D. 54 1Google Scholar

    [15]

    Zhuo L, Chen F, Gou B C 2010 Int. J. Quantum Chem. 110 1108Google Scholar

    [16]

    Drake G W F 2006 Springer Handbook of Atomic, Molecular, and Optical Physics (New York: Springer Science & Business Media) pp199–219

    [17]

    王黎明, 周挽平, 严宗朝 2021 中国科学: 物理学 力学 天文学 51 074203Google Scholar

    Wang L M, Zhou W P, Yan Z C 2021 Sci. Sin-Phys. Mech. Astron., 51 074203Google Scholar

    [18]

    Barrois R, Lüchow A, Kleindienst H 1996 Chem. Phys. Lett. 249 249Google Scholar

    [19]

    Yan Z C 2003 J. Phys. B:At. Mol. Opt. Phys. 36 2093Google Scholar

    [20]

    Barrois R, Bekavac S, Kleindienst H 1997 Chem. Phys. Lett. 268 531Google Scholar

    [21]

    Glass R 1978 J. Phys. B:At. Mol. Phys. 11 3469Google Scholar

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化.  , 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [3] 董成伟. 非扩散洛伦兹系统的周期轨道.  , 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [4] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究.  , 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [5] 陈园园, 杨盼杰, 张玮芝, 阎晓娜. 光子晶体理论研究的新方法混合变分法.  , 2016, 65(12): 124206. doi: 10.7498/aps.65.124206
    [6] 张梦若, 陈开鑫. 一种简单精准的渐变折射率分布光波导分析方法.  , 2015, 64(14): 144205. doi: 10.7498/aps.64.144205
    [7] 丁光涛. 阻尼最速落径问题和约束与运动定理的联系.  , 2014, 63(7): 070201. doi: 10.7498/aps.63.070201
    [8] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究.  , 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [9] 赵文达, 赵建, 续志军. 基于结构张量的变分多源图像融合.  , 2013, 62(21): 214204. doi: 10.7498/aps.62.214204
    [10] 杨晓勇, 薛海斌, 梁九卿. 自旋相干态变换和自旋-玻色模型的基于变分法的基态解析解.  , 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [11] 戴继慧, 郭旗. 强非局域非线性介质中的旋转涡旋光孤子.  , 2009, 58(3): 1752-1757. doi: 10.7498/aps.58.1752
    [12] 黄时中, 马 堃, 吴长义, 倪秀波. 氦原子1sns组态能量及其相对论修正.  , 2008, 57(9): 5469-5475. doi: 10.7498/aps.57.5469
    [13] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解.  , 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [14] 白东峰, 郭 旗, 胡 巍. 非局域克尔介质中厄米高斯光束传输的变分研究.  , 2008, 57(9): 5684-5689. doi: 10.7498/aps.57.5684
    [15] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计.  , 2006, 55(4): 1873-1882. doi: 10.7498/aps.55.1873
    [16] 罗来龙. 碳纤维混凝土中的隧道电流.  , 2005, 54(6): 2540-2544. doi: 10.7498/aps.54.2540
    [17] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正.  , 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [18] 常加峰, 曾祥华, 周朋霞, 毕桥. 透镜型量子点中类氢杂质基态能的计算.  , 2004, 53(4): 978-983. doi: 10.7498/aps.53.978
    [19] 康艳梅, 徐健学, 谢 勇. 单模非线性光学系统的弛豫速率与随机共振.  , 2003, 52(11): 2712-2717. doi: 10.7498/aps.52.2712
    [20] 韩利红, 苟秉聪, 王 菲. 类锂等电子系列高位三激发态2p2np4So能量和到1s2pmp4P态的辐射跃迁.  , 2000, 49(11): 2139-2145. doi: 10.7498/aps.49.2139
计量
  • 文章访问数:  4645
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-22
  • 上网日期:  2022-10-11
  • 刊出日期:  2022-10-20

/

返回文章
返回
Baidu
map