-
利用基于多组态Dirac-Hartree-Fock(MCDHF) 理论方法的相对论原子结构计算程序包GRASP2K, 细致计算了中性锂原子、类锂Be+, C3+, O5+, Ne7+, Ar15+, Fe23+, Mo39+, W71+及U89+ 离子基组态及较低的激发组态1s2nl (n = 24, l =s,p,d,f) 的精细结构能级, 以及各能级间发生电偶极(E1) 自发辐射跃迁的能量、概率及振子强度. 同时, 在非相对论极限下, 计算了其相关原子参数. 通过对相对论及非相对论计算结果的比较, 系统研究了相对论效应对类锂等电子系列离子能级结构及E1跃迁性质的影响, 揭示了随原子核电荷数Z变化时, 跃迁能、振子强度强烈依赖于量子数n, l, j变化的规律; 同时, 目前的计算结果与其他已有的理论计算及实验测量结果进行了比较.The transition energies, probabilities, and oscillator strengths for the electric dipole (E1) transitions between all levels of the ground state and the low-lying excited states of 1s2nl (n=24, l= s, p, d, f) configurations of Li atom and Li-like ions(Be+, C3+, O5+, Ne7+, Ar15+, Fe23 +, Mo39+, W71+, U89+) have been calculated, using the relativistic atomic computational code GRASP2K, which based on the Multi-configuration Dirac-Hartree-Fock (MCDHF) method. The norelativistic results for all of those transitions have been also obtained for comparative purposes by performing the similar calculations in the non-relativistic limit. The effects of relativity on the E1 transition energies and oscillator strengths of Li-like isoelectronic sequence are discussed with a particular emphasis, and some important conclusions are drawn. Comparison of the present results with other available data is also made, good agreement is obtained.
-
Keywords:
- MCDHF method /
- lithium isoelectronic sequence /
- transition energies /
- oscillator strengths
[1] Lin D L, Fielder W, Armstrong L 1977 Phys. Rev. A 16 589
[2] Johnson W R, Huang K N 1975 Phys. Rev. L 48 315
[3] Shorer P, Lin C D, Johnson W R 1977 Phys. Rev. A 16 1109
[4] Pegg D J, Forester J P, Vane C R, Elston S B, Griffin P M, Groeneveld K O, Peterson R S, Thoe R S, Sellin I A 1977 Phys. Rev. A 15 1958
[5] Samii M V, That D T, Armstrong L 1981 Phys. Rev. A 23 3034
[6] Armstrong L, Fielder W R, Lin D L 1976 Phys. Rev. A 14 1114
[7] Kim Y K, Desclaux J P 1976 Phys. Rev. L 36 139
[8] Çelik G 2007 J. Quant. Spectrosc. Radiat. Transfer 103 578
[9] Bieroń J, Jönsson P, Fischer C F 1999 Phys. Rev. A 60 3547
[10] Yerokhin V A, Artemyev A N, Shabaev V M 2007 Phys. Rev. A 75 062501
[11] Theodosiou C E, Curtis L J, Mekki M E 1991 Phys. Rev. A 44 7144
[12] Seely J F 1989 Phys. Rev. A 39 3682
[13] Natarajan L, Natarajan A 2007 Phys. Rev. A 75 062502
[14] Natarajan L, Natarajan A, Kadrekar R 2010 Phys. Rev. A 82 062514
[15] Cheng K T, Johnson W R 1977 Phys. Rev. A 16 263
[16] Fulton T, Johnson W R 1986 Phys. Rev. A 34 1686
[17] Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111
[18] Pegg D J, Griffin P M, Alton G D, Elston S B, Forester J P, Suter M, Thoe R S, Vane C R, Johnson B M 1978 Phys. Scr. 18 18
[19] Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H, MacDonald D, Marrus R, Johnson B M, Pegg D J 1977 Phys. Rev. A 18 208
[20] Liang G Y, Badnell N R 2011 Astron Astrophys 528 A 69
[21] Fricke B 1984 Phys. Scr. T8 129
[22] Fritzsche S 2002 Phys. Scr. T100 37
[23] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York : Springer)
[24] Grant I P and Quiney H M 1987 Adv. At. Mol. Phys. 23 37 Grant I P, Mckenzie B J, Norrington P H 1980 Comp. Phys. Commun. 21 207
[25] Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597
[26] Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425
[27] Cowan R D 1981 The theory of atomic structure and spectra (London: University of Califormia press) p450---455
[28] http: //www.nist.gov/pml/data/asd.cfm
[29] Gillaspy J D 2001 J. Phys. B 34 R93
[30] Voge M, Quint W 2010 Physics Reports 490 1
[31] Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys.: Conf. Ser 58 451
[32] Burke V M, Grant I P 1966 Proc. Phys. Soc. 90 297
-
[1] Lin D L, Fielder W, Armstrong L 1977 Phys. Rev. A 16 589
[2] Johnson W R, Huang K N 1975 Phys. Rev. L 48 315
[3] Shorer P, Lin C D, Johnson W R 1977 Phys. Rev. A 16 1109
[4] Pegg D J, Forester J P, Vane C R, Elston S B, Griffin P M, Groeneveld K O, Peterson R S, Thoe R S, Sellin I A 1977 Phys. Rev. A 15 1958
[5] Samii M V, That D T, Armstrong L 1981 Phys. Rev. A 23 3034
[6] Armstrong L, Fielder W R, Lin D L 1976 Phys. Rev. A 14 1114
[7] Kim Y K, Desclaux J P 1976 Phys. Rev. L 36 139
[8] Çelik G 2007 J. Quant. Spectrosc. Radiat. Transfer 103 578
[9] Bieroń J, Jönsson P, Fischer C F 1999 Phys. Rev. A 60 3547
[10] Yerokhin V A, Artemyev A N, Shabaev V M 2007 Phys. Rev. A 75 062501
[11] Theodosiou C E, Curtis L J, Mekki M E 1991 Phys. Rev. A 44 7144
[12] Seely J F 1989 Phys. Rev. A 39 3682
[13] Natarajan L, Natarajan A 2007 Phys. Rev. A 75 062502
[14] Natarajan L, Natarajan A, Kadrekar R 2010 Phys. Rev. A 82 062514
[15] Cheng K T, Johnson W R 1977 Phys. Rev. A 16 263
[16] Fulton T, Johnson W R 1986 Phys. Rev. A 34 1686
[17] Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111
[18] Pegg D J, Griffin P M, Alton G D, Elston S B, Forester J P, Suter M, Thoe R S, Vane C R, Johnson B M 1978 Phys. Scr. 18 18
[19] Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H, MacDonald D, Marrus R, Johnson B M, Pegg D J 1977 Phys. Rev. A 18 208
[20] Liang G Y, Badnell N R 2011 Astron Astrophys 528 A 69
[21] Fricke B 1984 Phys. Scr. T8 129
[22] Fritzsche S 2002 Phys. Scr. T100 37
[23] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York : Springer)
[24] Grant I P and Quiney H M 1987 Adv. At. Mol. Phys. 23 37 Grant I P, Mckenzie B J, Norrington P H 1980 Comp. Phys. Commun. 21 207
[25] Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597
[26] Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425
[27] Cowan R D 1981 The theory of atomic structure and spectra (London: University of Califormia press) p450---455
[28] http: //www.nist.gov/pml/data/asd.cfm
[29] Gillaspy J D 2001 J. Phys. B 34 R93
[30] Voge M, Quint W 2010 Physics Reports 490 1
[31] Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys.: Conf. Ser 58 451
[32] Burke V M, Grant I P 1966 Proc. Phys. Soc. 90 297
计量
- 文章访问数: 7996
- PDF下载量: 798
- 被引次数: 0