搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论效应对类锂离子能级结构及辐射跃迁性质的影响

刘尚宗 颉录有 丁晓彬 董晨钟

引用本文:
Citation:

相对论效应对类锂离子能级结构及辐射跃迁性质的影响

刘尚宗, 颉录有, 丁晓彬, 董晨钟

The effect of relativity on the structures and transition properties of Li-like ions

Liu Shang-Zong, Xie Lu-You, Ding Xiao-Bin, Dong Chen-Zhong
PDF
导出引用
  • 利用基于多组态Dirac-Hartree-Fock(MCDHF) 理论方法的相对论原子结构计算程序包GRASP2K, 细致计算了中性锂原子、类锂Be+, C3+, O5+, Ne7+, Ar15+, Fe23+, Mo39+, W71+及U89+ 离子基组态及较低的激发组态1s2nl (n = 24, l =s,p,d,f) 的精细结构能级, 以及各能级间发生电偶极(E1) 自发辐射跃迁的能量、概率及振子强度. 同时, 在非相对论极限下, 计算了其相关原子参数. 通过对相对论及非相对论计算结果的比较, 系统研究了相对论效应对类锂等电子系列离子能级结构及E1跃迁性质的影响, 揭示了随原子核电荷数Z变化时, 跃迁能、振子强度强烈依赖于量子数n, l, j变化的规律; 同时, 目前的计算结果与其他已有的理论计算及实验测量结果进行了比较.
    The transition energies, probabilities, and oscillator strengths for the electric dipole (E1) transitions between all levels of the ground state and the low-lying excited states of 1s2nl (n=24, l= s, p, d, f) configurations of Li atom and Li-like ions(Be+, C3+, O5+, Ne7+, Ar15+, Fe23 +, Mo39+, W71+, U89+) have been calculated, using the relativistic atomic computational code GRASP2K, which based on the Multi-configuration Dirac-Hartree-Fock (MCDHF) method. The norelativistic results for all of those transitions have been also obtained for comparative purposes by performing the similar calculations in the non-relativistic limit. The effects of relativity on the E1 transition energies and oscillator strengths of Li-like isoelectronic sequence are discussed with a particular emphasis, and some important conclusions are drawn. Comparison of the present results with other available data is also made, good agreement is obtained.
    • 基金项目: 国家自然科学基金(批准号:10875017, 10876028, 10964010, 91126007)和甘肃省高等学校科研业务费专项基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875017, 10876028, 10964010, 91126007), and the Scientific Research Foundation of the Higher Education Institutions of Gansu Province of China.
    [1]

    Lin D L, Fielder W, Armstrong L 1977 Phys. Rev. A 16 589

    [2]

    Johnson W R, Huang K N 1975 Phys. Rev. L 48 315

    [3]

    Shorer P, Lin C D, Johnson W R 1977 Phys. Rev. A 16 1109

    [4]

    Pegg D J, Forester J P, Vane C R, Elston S B, Griffin P M, Groeneveld K O, Peterson R S, Thoe R S, Sellin I A 1977 Phys. Rev. A 15 1958

    [5]

    Samii M V, That D T, Armstrong L 1981 Phys. Rev. A 23 3034

    [6]

    Armstrong L, Fielder W R, Lin D L 1976 Phys. Rev. A 14 1114

    [7]

    Kim Y K, Desclaux J P 1976 Phys. Rev. L 36 139

    [8]

    Çelik G 2007 J. Quant. Spectrosc. Radiat. Transfer 103 578

    [9]

    Bieroń J, Jönsson P, Fischer C F 1999 Phys. Rev. A 60 3547

    [10]

    Yerokhin V A, Artemyev A N, Shabaev V M 2007 Phys. Rev. A 75 062501

    [11]

    Theodosiou C E, Curtis L J, Mekki M E 1991 Phys. Rev. A 44 7144

    [12]

    Seely J F 1989 Phys. Rev. A 39 3682

    [13]

    Natarajan L, Natarajan A 2007 Phys. Rev. A 75 062502

    [14]

    Natarajan L, Natarajan A, Kadrekar R 2010 Phys. Rev. A 82 062514

    [15]

    Cheng K T, Johnson W R 1977 Phys. Rev. A 16 263

    [16]

    Fulton T, Johnson W R 1986 Phys. Rev. A 34 1686

    [17]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111

    [18]

    Pegg D J, Griffin P M, Alton G D, Elston S B, Forester J P, Suter M, Thoe R S, Vane C R, Johnson B M 1978 Phys. Scr. 18 18

    [19]

    Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H, MacDonald D, Marrus R, Johnson B M, Pegg D J 1977 Phys. Rev. A 18 208

    [20]

    Liang G Y, Badnell N R 2011 Astron Astrophys 528 A 69

    [21]

    Fricke B 1984 Phys. Scr. T8 129

    [22]

    Fritzsche S 2002 Phys. Scr. T100 37

    [23]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York : Springer)

    [24]

    Grant I P and Quiney H M 1987 Adv. At. Mol. Phys. 23 37 Grant I P, Mckenzie B J, Norrington P H 1980 Comp. Phys. Commun. 21 207

    [25]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [26]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425

    [27]

    Cowan R D 1981 The theory of atomic structure and spectra (London: University of Califormia press) p450---455

    [28]

    http: //www.nist.gov/pml/data/asd.cfm

    [29]

    Gillaspy J D 2001 J. Phys. B 34 R93

    [30]

    Voge M, Quint W 2010 Physics Reports 490 1

    [31]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys.: Conf. Ser 58 451

    [32]

    Burke V M, Grant I P 1966 Proc. Phys. Soc. 90 297

  • [1]

    Lin D L, Fielder W, Armstrong L 1977 Phys. Rev. A 16 589

    [2]

    Johnson W R, Huang K N 1975 Phys. Rev. L 48 315

    [3]

    Shorer P, Lin C D, Johnson W R 1977 Phys. Rev. A 16 1109

    [4]

    Pegg D J, Forester J P, Vane C R, Elston S B, Griffin P M, Groeneveld K O, Peterson R S, Thoe R S, Sellin I A 1977 Phys. Rev. A 15 1958

    [5]

    Samii M V, That D T, Armstrong L 1981 Phys. Rev. A 23 3034

    [6]

    Armstrong L, Fielder W R, Lin D L 1976 Phys. Rev. A 14 1114

    [7]

    Kim Y K, Desclaux J P 1976 Phys. Rev. L 36 139

    [8]

    Çelik G 2007 J. Quant. Spectrosc. Radiat. Transfer 103 578

    [9]

    Bieroń J, Jönsson P, Fischer C F 1999 Phys. Rev. A 60 3547

    [10]

    Yerokhin V A, Artemyev A N, Shabaev V M 2007 Phys. Rev. A 75 062501

    [11]

    Theodosiou C E, Curtis L J, Mekki M E 1991 Phys. Rev. A 44 7144

    [12]

    Seely J F 1989 Phys. Rev. A 39 3682

    [13]

    Natarajan L, Natarajan A 2007 Phys. Rev. A 75 062502

    [14]

    Natarajan L, Natarajan A, Kadrekar R 2010 Phys. Rev. A 82 062514

    [15]

    Cheng K T, Johnson W R 1977 Phys. Rev. A 16 263

    [16]

    Fulton T, Johnson W R 1986 Phys. Rev. A 34 1686

    [17]

    Cheng K T, Kim Y K, Desclaux J P 1979 At. Data Nucl. Data Tables 24 111

    [18]

    Pegg D J, Griffin P M, Alton G D, Elston S B, Forester J P, Suter M, Thoe R S, Vane C R, Johnson B M 1978 Phys. Scr. 18 18

    [19]

    Dietrich D D, Leavitt J A, Bashkin S, Conway J G, Gould H, MacDonald D, Marrus R, Johnson B M, Pegg D J 1977 Phys. Rev. A 18 208

    [20]

    Liang G Y, Badnell N R 2011 Astron Astrophys 528 A 69

    [21]

    Fricke B 1984 Phys. Scr. T8 129

    [22]

    Fritzsche S 2002 Phys. Scr. T100 37

    [23]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York : Springer)

    [24]

    Grant I P and Quiney H M 1987 Adv. At. Mol. Phys. 23 37 Grant I P, Mckenzie B J, Norrington P H 1980 Comp. Phys. Commun. 21 207

    [25]

    Jönsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [26]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425

    [27]

    Cowan R D 1981 The theory of atomic structure and spectra (London: University of Califormia press) p450---455

    [28]

    http: //www.nist.gov/pml/data/asd.cfm

    [29]

    Gillaspy J D 2001 J. Phys. B 34 R93

    [30]

    Voge M, Quint W 2010 Physics Reports 490 1

    [31]

    Gillaspy J D, Pomeroy J M, Perrella A C, Grube H 2007 J. Phys.: Conf. Ser 58 451

    [32]

    Burke V M, Grant I P 1966 Proc. Phys. Soc. 90 297

  • [1] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究.  , 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [2] 牟致栋. Rh XIII—Cd XVI离子4s24p3—4s4p4能级与跃迁的理论计算.  , 2019, 68(6): 063101. doi: 10.7498/aps.68.20181976
    [3] 钱新宇, 孙言, 刘冬冬, 胡峰, 樊秋波, 苟秉聪. 硼原(离)子内壳激发高自旋态能级和辐射跃迁.  , 2017, 66(12): 123101. doi: 10.7498/aps.66.123101
    [4] 王宏斌, 蒋刚, 朱正和, 万明杰. H2X(X=O,S,Se,Te)分子的双光子激发.  , 2013, 62(19): 193102. doi: 10.7498/aps.62.193102
    [5] 丁丁, 曾思良, 王建国, 屈世显. 磁化等离子体环境对氢原子能级结构的影响.  , 2013, 62(7): 073201. doi: 10.7498/aps.62.073201
    [6] 蔡绍洪, 周业宏, 何建勇. 外场下丙烯酸甲酯的激发特性研究.  , 2011, 60(9): 093102. doi: 10.7498/aps.60.093102
    [7] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究.  , 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [8] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质.  , 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [9] 杨富利, 易有根. 类钾离子4s 2S1/2─3d 2D3/2电四极矩E2光谱跃迁的理论研究.  , 2008, 57(3): 1622-1625. doi: 10.7498/aps.57.1622
    [10] 李永强, 吴建华, 袁建民. 等离子体屏蔽效应对原子能级和振子强度的影响.  , 2008, 57(7): 4042-4048. doi: 10.7498/aps.57.4042
    [11] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算.  , 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [12] 欧阳永中, 易有根, 朱正和, 郑志坚. 类铍离子磁四极M2 2s2 1S0—2s2p3P2 (Z=10—103)禁戒跃迁.  , 2007, 56(7): 3880-3886. doi: 10.7498/aps.56.3880
    [13] 王晓峰, 乔豪学, 刘海林, 于国萍. 限制环境下类氢体系的共振增强现象.  , 2005, 54(8): 3530-3534. doi: 10.7498/aps.54.3530
    [14] 吴晓丽, 苟秉聪, 刘义东. 氦原子单激发和双激发态里德伯系列的相对论能量计算.  , 2004, 53(1): 48-53. doi: 10.7498/aps.53.48
    [15] 牟致栋, 魏琦瑛. MoⅩⅣ—RuⅩⅥ离子的3d104s—3d94s4p跃迁谱线波长和振子强度的计算.  , 2004, 53(6): 1742-1748. doi: 10.7498/aps.53.1742
    [16] 韩利红, 芶秉聪, 王菲. 类铍BⅡ离子激发态的相对论能量和精细结构.  , 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
    [17] 王菲, 芶秉聪, 韩利. 锂内壳高激发2smd4De,2pnd4Do系列的能量和辐射跃迁.  , 2001, 50(9): 1685-1688. doi: 10.7498/aps.50.1685
    [18] 韩利红, 苟秉聪, 王 菲. 类锂等电子系列高位三激发态2p2np4So能量和到1s2pmp4P态的辐射跃迁.  , 2000, 49(11): 2139-2145. doi: 10.7498/aps.49.2139
    [19] 郑能武, 李国胜. 多电子原子和离子的等电子系参数的研究(Ⅱ)——跃迁概率与振子强度的计算.  , 1993, 42(5): 735-740. doi: 10.7498/aps.42.735
    [20] 潘晓川, 李家明. 等电子系列离子的广义振子强度密度之标度关系.  , 1985, 34(11): 1500-1508. doi: 10.7498/aps.34.1500
计量
  • 文章访问数:  7996
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-30
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map