-
The magnetoelectric (ME) antenna based on the piezoelectric resonance principle can address the problems of large size and high power consumption of traditional low-frequency electrical antennas. However, the acoustic impedance mismatch between the adhesive layer in the magnetoelectric composite and the piezoelectric and ferromagnetic phases significantly hinders the stress transfer during the magneto-mechanicalelectric coupling process, ultimately limiting the magnetic radiation intensity of the magnetoelectric composite. To enhance the magnetic emission performance of the PZT MFC/Metglas magnetoelectric composite, this paper selects the two-dimensional filler MoS2 to fill and modify the adhesive layer of the PZT MFC/Metglas magnetoelectric composite, aiming to increase the acoustic impedance matching between the adhesive layer and the ferroelectric and ferromagnetic phases. The influence of the MoS2 content on the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite has been systematically studied. The results show that when the filling content of MoS2 is 1 wt%, the magnetic emission intensity of the PZT MFC/Metglas magnetoelectric composite can reach 331 µT under the optimal bias, which is 1.5 times higher than that of the magnetoelectric composite without MoS2 filling. At a distance of 1 m, the magnetic emission intensity can reach 2.7 nT. Combined with the acoustic impedance matching theory, the stress wave transfer mechanism in the electro-mechanical-magnetic coupling has been discussed. In addition, through the amplitude shift keying (ASK) modulation method, the lossless signal transmission capability of the magnetoelectric antenna made of the MoS2-modified PZT MFC/Metglas magnetoelectric composite has been demonstrated. This method of optimizing the interfacial adhesive layer presents a simple and effective approach to expand the magnetoelectric response by increasing the stress wave transfer efficiency. Meanwhile, it provides a feasible solution for communication systems such as low-frequency underwater communication, underground sensing, and distributed wireless networks.
-
Keywords:
- PZT MFC/Metglas magnetoelectric composite /
- Magnetic emission intensity /
- Stress transfer /
- Acoustic impedance
-
[1] Cui Y, Wu M, Song X, Huang Y P, Jia Q, Tao Y F, Wang C 2020 Acta Phys. Sin. 69208401(in Chinese) [崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛2020 69208401]
[2] Yang S, Geng J, Zhou H, Wang K, Zhao X, Lu J, Zhao R, Tang X, Zhang Y, Su D, Zhang A, Li H, Jin R 2023 IEEE Trans. Antennas Propag. 712082
[3] Yang N N, Chen X, Wang Y J 2018 Acta Phys. Sin. 67157508(in Chinese) [杨娜娜, 陈轩, 汪尧进2018 67157508]
[4] Song K X, Min S G, Gao J Q, Zhang S J, Mao Z N, Shen Y, Chu Z Q 2022 Acta Phys. Sin. 71247502(in Chinese) [宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 褚昭强2022 71247502]
[5] Nie C W, Wu H Z, Wang S H, Cai Y Y, Song S, Sokolov O, Bichurin M I, Wang Y J 2021 Acta Phys. Sin. 70247501(in Chinese) [聂长文, 吴瀚舟, 王书豪, 蔡园园, 宋树, Sokolov Oleg, Bichurin, 汪尧进2021 70247501]
[6] Chu Z, Yu C, Dan W, Jiang S, Ren Y, Dong K, Dong S 2024 Appl. Phys. Lett. 124072901
[7] Li W, Li D, Zhou K, Fu Q, Yuan X, Zhu X 2023 IEEE Trans. Antennas Propag. 71263
[8] Cheng Z, Zhou J, Wang B, Wu Q, Ma L, Qin Z, Shen J, Chen W, Peng W, Chang J, Ci P, Dong S 2024 Adv. Sci 112403746
[9] Cui Y, Wang C, Song X, Wu M, Zhang Q, Yuan H, Yuan Z 2023 iScience 26105832
[10] Niu Y, Ren H 2022 IEEE Sens. J. 2214008
[11] Liu K, Qin Z, Shen J, Cheng Z, You S, Ma L, Zhou J, Chen W 2024 Nano Res. 176630
[12] Xiao N, Wang Y, Chen L, Wang G, Wen Y, Li P 2023 IEEE Antennas Wirel. Propag. Lett. 2234
[13] Chang J, He Z, Xu S, Zheng X, Peng W, Ci P, Wang B, Zhang C, Dong S 2024 Adv. Mater. 362309159
[14] Dong C, He Y, Li M, Tu C, Chu Z, Liang X, Chen H, Wei Y, Zaeimbashi M, Wang X, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Lett. 19398
[15] Silva M, Reis S, Lehmann C S, Martins P, Lanceros Mendez S, Lasheras A, Gutiérrez J, Barandiarán J M 2013 ACS Appl. Mater. Interfaces 510912
[16] Hwang G T, Palneedi H, Jung B M, Kwon S J, Peddigari M, Min Y, Kim J W, Ahn C W, Choi J J, Hahn B D, Choi J H, Yoon W H, Park D S, Lee S B, Choe Y, Kim K H, Ryu J 2018 ACS Appl. Mater. Interfaces 1032323
[17] Kim S H, Thakre A, Patil D R, Park S H, Listyawan T A, Park N, Hwang G T, Jang J, Kim K H, Ryu J 2021 ACS Appl. Mater. Interfaces 1319983
[18] Wong C M, Chan S F, Wu W C, Suen C H, Yau H M, Wang D Y, Li S, Dai J Y 2021 Ultrasonics 116106506
[19] Madeshwaran S R, Jayaganthan R, Velmurugan R, Gupta N K, Manzhirov A V 2018 J Phys Conf Ser 991012054
[20] Zhou J, Zhou J, Chen W, Tian J, Shen J, Zhang P 2022 Compos. Struct. 299116019
[21] Liang J Z 2013 Compos. B. Eng. 51224
[22] Krautkrämer J, Krautkrämer H 2013 Ultrasonic testing of materials (Springer Science & Business Media)
[23] Hassanien A E, Breen M, Li M H, Gong S 2020 Sci. Rep. 1017006
[24] Hu L, Zhang Q, Wu H, You H, Jiao J, Luo H, Wang Y, Duan C, Gao A 2022 J. Phys. Condens. Matter 34414002
[25] Du Y, Xu Y, Wu J, Qiao J, Wang Z, Hu Z, Jiang Z, Liu M 2023 IEEE Trans. Antennas Propag. 712167
[26] Fu S, Cheng J, Jiang T, Wu H, Fang Z, Jiao J, Sokolov O, Ivanov S, Bichurin M, Wang Y 2023 Appl. Phys. Lett. 122262901
[27] Leung C M, Zheng H, Yang J, Wang T, Wang F 2024 Sensors 24694
Metrics
- Abstract views: 16
- PDF Downloads: 0
- Cited By: 0