Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Third-harmonic generation in ultraviolet band with simply-structured optical fibers

HUANG Yuqiang CHEN Manjing JIANG Xiujuan

Citation:

Third-harmonic generation in ultraviolet band with simply-structured optical fibers

HUANG Yuqiang, CHEN Manjing, JIANG Xiujuan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ultraviolet fiber lasers are highly desired in different fields such as lithography, laser processing, optical communications, optical storage, and biomedicine. On the other hand, all-fiber frequency conversion technology is of great significance in scientific research and practical applications, as it provides an alternative to the current solutions based on nonlinear crystals. Developing special optical fibers with both suitable mechanical performance and conversion efficiency and reducing the difficulty in their preparing are the key challenges in bringing this novel technology into practical application. In this work, three step-index optical fibers with simple structure are designed, they being a conventional single-cladding fiber (CSCF) with high numerical aperture, a microfiber (MF), and a W-type double-cladding fiber (WDCF), and the third-harmonic generation in ultraviolet band is studied by using them, respectively. The fundamental (pump) wavelength used in this work is 1064 nm and the third-harmonic wavelength is 355 nm.In order to achieve good transmission in the ultraviolet band, the cores of all three optical fibers are designed to be made of pure silica glass, and the core diameters are determined according to the phase matching condition for the fundamental wave and the third harmonic, by solving the eigenvalue equations. The cladding of CSCF is fluorine-doped silica glass, and the cladding of MF is air; for WDCF, the inner cladding and outer cladding are fluorine-doped silica glass and fluoroplastics, respectively. Both the CSCF and the WDCF have solid cladding, and their core diameters can be greater than 2 μm, so they have adequate mechanical properties. In comparison, due to the air cladding and thin core, the core diameter has to be less than 1 μm for phase matching, the MF is fragile in structure and thus its mechanical performance is rather poor.The conversion efficiencies of these three fibers are investigated in detail, by solving numerically the coupled mode equations for the pump and the third harmonic with the Runge-Kutta method. The effect of random fiber roughness (i.e. core diameter fluctuation) and enhancement in conversion efficiency by cascading the fibers are also analyzed. The results show that the conversion efficiency in MF is the highest, with an efficiency of 2% for a 5-mm-long single MF segment and over 20% for cascaded MFs ; however, MF requires strict fabrication accuracy, and the tolerance of core diameter is only ± 0.3 nm. The CSCF has the lowest conversion efficiency, which is 0.1% for a 50-mm-long single segment and at the level of about 1% after cascading, and the tolerance of core diameter is ± 1 nm. The conversion efficiency of WDCF is between those of CSCF and MF, nearly 2% with a 50-mm-long segment and about 16% when four such segments are cascaded; WDCF bears core diameter tolerance of ± 3 nm, which is three times that of CSCF and 10 times that of MF. Therefore, the W-type double-cladding fiber WDCF actually integrates the advantages of conventional single-cladding fiber CSCF and microfiber MF, showing both satisfactory mechanical performance and conversion efficiency, as well as reduced fabrication difficulty, which provides a promising solution for all-fiber third-harmonic generation in the ultraviolet band.
  • 图 1  光纤级联系统示意图, 其中TF表示转换光纤, GF表示传导光纤, P0为输入泵浦功率, P1为残余泵浦功率, P3为输出的三次谐波功率

    Figure 1.  Schematic of the cascaded fiber system. TF is the third-harmonic generation fiber, GF is the guiding fiber, P0 is input pump power, P1 is residual pump power, and P3 is output harmonic power.

    图 2  光纤折射率示意图 (a)单包层光纤的横截面; (b)单包层光纤折射率随半径的分布; (c) W型双包层光纤的横截面; (d) W型双包层光纤折射率随半径的分布

    Figure 2.  Refractive index diagram of optical fiber: (a) Cross-section of single-cladding fiber; (b) refractive index distribution in radius of single-cladding fiber; (c) cross-section of W-type double-cladding fiber; (d) refractive index distribution in radius of W-type double-cladding fiber.

    图 3  基频波和三次谐波不同模式的有效折射率$ {n}^{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $与纤芯直径 $ {d}_{1} $的关系 (a)常规单包层光纤CSCF; (b)微纳光纤MF; (c)双包层光纤WDCF, 基频波长$ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $

    Figure 3.  Dependence of effective refractive index $ {n}^{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $ of the fundamental wave and the third harmonic on core diameter $ {d}_{1} $: (a) CSCF; (b) MF; (c) WDCF. The fundamental wavelength is $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $.

    图 4  三次谐波转换效率与纤芯直径d1、入射泵浦功率P0的关系 (a)常规单包层光纤CSCF, 长度为50 mm; (b)微纳光纤MF, 长度为5 mm; (c)双包层光纤WDCF, 长度为50 mm

    Figure 4.  Dependence of third harmonic conversion efficiency on core diameter d1 and input pump power P0: (a) CSCF in 50 mm length; (b) MF in 5 mm length; (c) WDCF in 50 mm length.

    图 5  光纤具有不同随机粗糙度σ时的三次谐波转换效率$ \eta $ (a)常规单包层光纤CSCF, 长度为50 mm; (b)微纳光纤MF, 长度为5 mm; (c)双包层光纤WDCF, 长度为50 mm

    Figure 5.  Third harmonic conversion efficiency for different fiber random roughness: (a) CSCF in 50 mm length; (b) MF in 5 mm length; (c) WDCF in 50 mm length.

    图 6  纤芯直径不同时总相位失配量$ {\delta \beta }_{t} $随泵浦光功率P0的变化 (a)常规单包层光纤CSCF, 长度为50 mm, 纤芯直径分别为$ {d}_{1}=2217,\; 2216, \;2215\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (b)微纳光纤MF, 长度为5 mm, 纤芯直径分别为$ {d}_{1}=506.3, \;506, \;505.7\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (c)双包层光纤WDCF, 长度为50 mm, 纤芯直径分别为$ {d}_{1}= $$ 2217, \;2214, \;2211\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $

    Figure 6.  Total mismatch in propagation constant $ {\delta \beta }_{t} $ versus input pump power P0 for different core diameters: (a) CSCF in 50 mm length, core diameters are $ {d}_{1}=2217,\; 2216, $$ 2215\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (b) MF in 5 mm length, core diameters are $ {d}_{1}=506.3, \;506, \;505.7\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (c) WDCF in 50 mm length, core diameters are $ {d}_{1}=2217,\; 2214, \;2211{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}\;{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $.

    图 7  级联单元数N不同时三次谐波转换效率$ \eta $随泵浦光功率P0的变化 (a)转换光纤为常规单包层光纤CSCF, 长度LTF = 50 mm; (b)转换光纤为微纳光纤MF, 长度LTF = 5 mm; (c)转换光纤为双包层光纤WDCF, 长度LTF = 50 mm. 泵浦光波长$ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, 转换光纤粗糙度σ = 0.3 nm; 传导光纤为标准阶跃型光纤(纤芯直径9 μm, 长度LGF = 20 cm)

    Figure 7.  Third harmonic conversion efficiency versus input pump power for cascading system of different unit number N: (a) CSCF as the third-harmonic generation fiber (TF), with length LTF = 50 mm; (b) MF as the TF, with length LTF = 5 mm; (c) WDCF as the TF, with length LTF = 50 mm. The pump wavelength is $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, and the TFs are of roughness (σ = 0.3 nm). The guiding fibers (GFs) are standard step-index fibers (9 μm core diameter, length LGF = 20 cm).

    表 1  光纤的基本参数(基频波长$ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, 三次谐波波长$ {\lambda }_{3}=355\;{\mathrm{n}}{\mathrm{m}} $)

    Table 1.  Basic parameters of optical fibers (fundamental wavelength $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, third-harmonic wavelength $ {\lambda }_{3}=355\;{\mathrm{n}}{\mathrm{m}} $).

    基本参数 光纤类型
    CSCF MF WDCF
    纤芯材料 纯silica 纯silica 纯silica
    内包层材料 掺氟silica 空气 掺氟silica
    外包层材料 氟塑料
    基频折射率
    [n1, n2, n3]
    [1.45, 1.33, —] [1.45, 1, —] [1.45, 1.33, 1.37]
    三次谐波折射率
    [n1, n2, n3]
    [1.48, 1.36, —] [1.48, 1, —] [1.48, 1.36, 1.40]
    基频模式 HE11(λ1) HE11(λ1) HE11(λ1)
    三次谐波模式 HE13(λ3) HE12(λ3) HE13(λ3)
    纤芯直径d1/nm 2217.3 506.5 2217.4
    包层直径
    [d2, d3]/μm
    [125, —] [$ {\mathrm{\infty }} $, —] [6, 125]
    光纤长度L/mm 50 5 50
    非线性重叠
    积分J3/μm–2
    0.0092 0.7266 0.0344
    基频功率
    损耗系数
    $ {\alpha }_{1} $/(dB $ \cdot $m–1)
    0.08 2 0.08
    谐波功率
    损耗系数
    $ {\alpha }_{3} $/(dB $ \cdot $m–1)
    0.8 20 0.8
    DownLoad: CSV

    表 2  三种光纤的特性对比(泵浦光波长 $ {\lambda }_{1}= $$ 1064\;{\mathrm{n}}{\mathrm{m}} $, 光纤粗糙度σ = 0.3 nm)

    Table 2.  Comparison of characteristics of three fibers (pump wavelength is $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, and the TFs are of roughness σ = 0.3 nm).

    特性光纤类型
    CSCFMFWDCF
    机械强度较强较强
    优化的纤芯直径/nm22165062214
    纤芯直径误差宽容度/nm±1±0.3±3
    $ {\eta }^{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $(N = 1)/%0.12.81.8
    $ {\eta }^{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $(N = 4)/%1.422.916.0
    DownLoad: CSV
    Baidu
  • [1]

    周朴, 冷进勇, 肖虎, 马鹏飞, 许将明, 刘伟, 姚天甫, 张汉伟, 黄良金, 潘志勇 2021 中国激光 48 2000001Google Scholar

    Zhou P, Leng J Y, Xiao H, Ma P F, Xu J M, Liu W, Yao T F, Zhang H W, Huang L J, Pan Z Y 2021 Chin. J. Lasers 48 2000001Google Scholar

    [2]

    Lü X L, Peng Y J, Wang W Y, Zhao Y N, Zhu X Y, Leng Y X 2021 High Power Laser Sci. 9 03000e38

    [3]

    Fu Q, Hanrahan N, Xu L, Lane S, Lin D, Jung Y, Mahajan S, Richardson D J 2021 Opt. Express 29 42485Google Scholar

    [4]

    Bencheikh K, Richard S, Mélin G, Krabshuis G, Gooijer F, Levenson J 2012 Opt. Lett. 37 289Google Scholar

    [5]

    Cheng T, Gao W, Liao M, Duan Z, Deng D, Matsumoto M, Misumi T, Suzuki T, Ohishi Y 2014 Opt. Lett. 39 1005Google Scholar

    [6]

    Gabriagues J 1983 Opt. Lett. 8 183Google Scholar

    [7]

    Grubsky V, Savchenko A 2005 Opt. Express 13 6798Google Scholar

    [8]

    Efimov A, Taylor A, Omenetto F, Knight J, Wadsworth W, Russell P 2003 Opt. Express 11 2567Google Scholar

    [9]

    滕欢, 柴路, 王清月, 胡明列 2017 66 044205Google Scholar

    Teng H, Chai L, Wang Q Y, Hu M L 2017 Acta Phys. Sin. 66 044205Google Scholar

    [10]

    Boivin M, El-Amraoui M, Ledemi Y, Morency S, Vallée R, Messaddeq Y 2014 Opt. Mater. Express 4 1740Google Scholar

    [11]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (New York: Chapman and Hall) pp248-254

    [12]

    Brunet C, Bélanger P A, Rusch L A 2016 J. Lightwave Technol. 34 3094Google Scholar

    [13]

    Tsao C 1992 Optical Fibre Waveguide Analysis (New York: Oxford University Press) pp298-369

    [14]

    Kong M, Shi B 2006 Fiber Integrated Opt. 25 305Google Scholar

    [15]

    Jiang X J, Zhang D D, Lee T, Brambilla G 2018 Opt. Lett. 43 2728Google Scholar

    [16]

    Jiang X J, Chen Z N, Lee T, Brambilla G 2020 Opt. Lett. 45 3272Google Scholar

    [17]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205Google Scholar

    [18]

    Tan C Z 1998 J. Non-Cryst. Solids 223 158Google Scholar

    [19]

    Lee T, Jung Y, Codemard C, Ding M, Broderick N, Brambilla G 2012 Opt. Express 20 8503Google Scholar

    [20]

    Refractive index database, https://refractiveindex.info/

    [21]

    Agrawal G P 2019 Nonlinear Fiber Optics (London: Academic) pp476-477

    [22]

    Jiang X J, Lee T, Chen M M, Sun Q, He J, Brambilla G 2019 Opt. Lett. 44 4191Google Scholar

  • [1] Zhao Li-Juan, Jiang Huan-Qiu, Xu Zhi-Niu. Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum. Acta Physica Sinica, doi: 10.7498/aps.72.20222405
    [2] Wang Hao, Cao Shan-Shan, Su Jun-Hao, Xu Hai-Tao, Wang Zhen, Zheng Jia-Jin, Wei Wei. Temperature field monitoring of lithium battery pack based on double-clad fiber Bragg grating sensor. Acta Physica Sinica, doi: 10.7498/aps.71.20212302
    [3] Teng Huan, Chai Lu, Wang Qing-Yue, Hu Ming-Lie. Optimazation of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.66.044205
    [4] Fu Xing-Hu, Xie Hai-Yang, Yang Chuan-Qing, Zhang Shun-Yang, Fu Guang-Wei, Bi Wei-Hong. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance. Acta Physica Sinica, doi: 10.7498/aps.65.024211
    [5] Zhao Nan, Chen Gui, Wang Yi-Bo, Peng Jing-Gang, Li Jin-Yan. Double-clad large-mode-area polarization-maintaining ytterbium doped photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.63.024202
    [6] Xing Ying-Bin, Ye Bao-Yuan, Jiang Zuo-Wen, Dai Neng-Li, Li Jin-Yan. Development of high efficiency Tm3+-doped fiber and Tm3+-doped fiber laser. Acta Physica Sinica, doi: 10.7498/aps.63.014209
    [7] Wang Sha-Sha, Pan Yu-Zhai, Gao Ren-Xi, Zhu Xiu-Fen, Su Xiao-Hui, Qu Shi-Liang. Mode-locked double-clad fiber laser with a carbon nanotubes saturable absorber. Acta Physica Sinica, doi: 10.7498/aps.62.024209
    [8] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, doi: 10.7498/aps.62.044210
    [9] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, doi: 10.7498/aps.61.054210
    [10] Yan Feng-Ping, Liu Peng, Tao Pei-Lin, Li Qi, Peng Wan-Jing, Feng Ting, Tan Si-Yu. Analysis of absorption property for pumping laser with double cladding rare earth doped fiber. Acta Physica Sinica, doi: 10.7498/aps.61.164203
    [11] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.61.154210
    [12] Wang Yan-Shan, Jiang Zuo-Wen, Luan Huan-Xun, Zhang Ze-Xue, Peng Jing-Gang, Yang Lü-Yun, Li Jin-Yan, Dai Neng-Li. Preparation and spectral characteristics of Bi-doped double cladding fiber. Acta Physica Sinica, doi: 10.7498/aps.61.084215
    [13] Zhu Bao-Qiang, Dai Ya-Ping, Zhu Jian, Zhan Ting-Yu, Lin Zun-Qi, Ji Lai-Lin, Ma Wei-Xin. The third harmonics generation with large aperture and high fluency. Acta Physica Sinica, doi: 10.7498/aps.60.094210
    [14] Cui Yan-Ling, Hou Lan-Tian. Dispersion characteristic of a new hybrid cladding photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.59.2571
    [15] Han Wei-Tao, Hou Lan-Tian, Geng Peng-Cheng. Numerical and experimental study on coherent combining of double cladding multi-core photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.59.7091
    [16] Liu Yang, Cheng Yong, Xu Li-Xin, Zheng Rui, Wang Xiao-Bing, Wang Hui-Sheng, Lu Chang-Yong, Sun Bin. Mutual injection phase-locking of two double clad fiber lasers. Acta Physica Sinica, doi: 10.7498/aps.58.3929
    [17] Zhao Hong-Ming, Lou Qi-Hong, Zhou Jun, Dong Jing-Xing, Wei Yun-Rong, Wang Zhi-Jiang. Study of characteristics of acoustic-optic Q-switched double-clad fiber laser with different cavity configurations. Acta Physica Sinica, doi: 10.7498/aps.57.3525
    [18] Song You-Jian, Hu Ming-Lie, Liu Qing-Wen, Li Jin-Yan, Chen Wei, Chai Lu, Wang Qing-Yue. A mode-locked Yb3+-doped double-clad large-mode-area fiber laser. Acta Physica Sinica, doi: 10.7498/aps.57.5045
    [19] Yang Yi-Sheng, Zheng Wan-Guo, Han Wei, Che Ya-Liang, Tan Ji-Chun, Xiang Yong, Jia Huai-Ting. Group-velocity-matching relation in the mixing process of broadband third-harmonic generation. Acta Physica Sinica, doi: 10.7498/aps.56.6468
    [20] Fu Sheng-Gui, Fan Wan-De, Zhang Qiang, Wang Zhi, Li Li-Jun, Zhang Chun-Shu, Yuan Shu-Zhong, Dong Xiao-Yi. Yb3+doped double-clad fiber laser based on fiber Bragg grating. Acta Physica Sinica, doi: 10.7498/aps.53.4262
Metrics
  • Abstract views:  183
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2025
  • Accepted Date:  07 April 2025
  • Available Online:  24 April 2025

/

返回文章
返回
Baidu
map