Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimazation of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber

Teng Huan Chai Lu Wang Qing-Yue Hu Ming-Lie

Citation:

Optimazation of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber

Teng Huan, Chai Lu, Wang Qing-Yue, Hu Ming-Lie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The generation of pulse radiation with different frequency based on nonlinear optical frequency conversion technology is an effective method to produce lasers with the wavelength in the visible light or ultraviolet (UV) light range. In recent years, the developments of photonic crystal fiber (PCF) technology and ultra-short pulse technology have brought new solutions to the problems that the system needs great maintenance work, has low frequency conversion rate and much difficulty in popularizing, which the traditional frequency conversion system based on nonlinear crystal is confronting. Research on UV pulse radiation has been consistently attracting much attention of many academics. Particularly, narrowband and broadband UV pulse radiation sources are complementary, each having its own characteristics and scope of applications. The generation of narrowband UV pulse radiation of high sensitivity and high resolution through third harmonic generation (THG) in PCF has already been reported. However, the frequency conversion rate of narrowband UV pulse radiation is relatively low and the tunable ability of the spectrum is limited. These imperfections can be exactly completed by broadband UV pulse radiation. Broadband UV pulse radiation based on THG in PCF can be realized efficiently in PCF. This means that the conversion of UV light increases substantially, and simultaneously, the narrowband UV radiation of any wavelength in a certain range can be acquired more easily and the tunable ability of narrowband UV pulse radiation can be enhanced further. In this paper, the femtosecond pulse with a central wavelength of 1035 nm at a pulse repetition rate of 50 MHz is coupled into a highly nonlinear photonic crystal fiber with an appropriate length. The Raman self-frequency shift soliton produced from the ultra-short input pulse acts as a pump resource of third harmonic, transmitting through fundamental mode in PCF. Phase-matching between the fundamental mode and the high order modes is achieved and the third harmonic transmitted by specific high order modes (such as HE13) at deep UV wavelength is acquired effectively. Besides, the very high order UV mode (HOUVM) transmitting third harmonic with shorter wavelength is stimulated when intentionally inputting the ultra-short pulse into the PCF in the direction of a certain angle deviating from the axis of fiber core. Broadband deep UV (320-360 nm) pulse radiation with a UV light conversion rate of 3.6% can be acquired effectively in nonlinear PCF by stimulating a number of adjacent HOUVMs and achieving phase matching between the modes. Good agreement between theoretical results and experimental results is achieved.
      Corresponding author: Hu Ming-Lie, huminglie@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61535009,61675150) and the Program for Changjiang Scholars and Innovative Research Team in Universities,China (Grant No.IRT13033).
    [1]

    Chalfie M 1994 Trends Genet. 10 151

    [2]

    Madsen J A, Boutz D R, Brodbelt J S 2010 J. Proteome Res. 9 4205

    [3]

    Margulies M, Egholm M, Altman W E, et al. 2005 Nature 437 376

    [4]

    Squier J, Muller M, Brakenhoff G, Wilson K R 1998 Opt. Express 3 315

    [5]

    Doronina L V, Voronin A A, Ivashkina O I, et al. 2009 Opt. Lett. 34 3373

    [6]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 796

    [7]

    Yang H 2004 Ph. D. Dissertation (Beijing:Institude of Physics CAS) (in Chinese)[杨辉 2004 博士学位论文 (北京:中国科学院物理研究所)]

    [8]

    Peng N L, Li W H, Jiang S E, Yuan X D, Tang J, Liu Y G 2002 High Power Laser Part. Beams 14 254 (in Chinese)[彭能岭, 李文洪, 江少恩, 袁晓东, 唐军, 刘永刚 2002 强激光与粒子束 14 254]

    [9]

    Li Z Y, Chen B Q 2016 Physics 45 188 (in Chinese)[李志远, 陈宝琴 2016 物理 45 188]

    [10]

    Bloembergen N 1965 Nonlinear Optics (New York:Benjamin) p8

    [11]

    Knight J C 2003 Nature 424 847

    [12]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [13]

    Russell P S J 2006 J. Lightwave Technol. 24 4729

    [14]

    Yelin D, Silberberg Y 1999 Opt. Express 5 169

    [15]

    Akimov D A, Ivanov A A, Alfimov M V, Grabchak E P, Shtykova A A, Petrov A N, Podshivalov A A, Zheltikov A M 2003 J. Raman Spectrosc. 34 1007

    [16]

    Serebryannikov E E, Fedotov A B, Zheltikov A M, Ivanov A, Alfimov M V, Knight J C 2006 J. Opt. Soc. Am. B 23 1975

    [17]

    Konorov S O, Fedotov A B, Serebryannikov E E, Mitrokhin V P, Sidorovbiryukov D A, Zheltikov A M 2005 J. Raman Spectrosc. 36 129

    [18]

    Liu B W, Hu M L, Wang S J, Chai L, Wang Q Y, Dai N L, Li J Y, Zheltikov A M 2010 Opt. Lett. 35 3958

    [19]

    Fedotov A B, Voronin A A, Serebryannikov E E, Fedotov I V, Mitrofanov A V, Ivanov A A, Sidorovbiryukov D A, Zheltikov A M 2007 Phys. Rev. E 75 16614

    [20]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 2567

    [21]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 910

    [22]

    Zheltikov A M 2005 Phys. Rev. A 72 43812

    [23]

    Zhang H Q, Wang P, Liu W J 2016 Chin. Phys. B 25 024209

  • [1]

    Chalfie M 1994 Trends Genet. 10 151

    [2]

    Madsen J A, Boutz D R, Brodbelt J S 2010 J. Proteome Res. 9 4205

    [3]

    Margulies M, Egholm M, Altman W E, et al. 2005 Nature 437 376

    [4]

    Squier J, Muller M, Brakenhoff G, Wilson K R 1998 Opt. Express 3 315

    [5]

    Doronina L V, Voronin A A, Ivashkina O I, et al. 2009 Opt. Lett. 34 3373

    [6]

    Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 796

    [7]

    Yang H 2004 Ph. D. Dissertation (Beijing:Institude of Physics CAS) (in Chinese)[杨辉 2004 博士学位论文 (北京:中国科学院物理研究所)]

    [8]

    Peng N L, Li W H, Jiang S E, Yuan X D, Tang J, Liu Y G 2002 High Power Laser Part. Beams 14 254 (in Chinese)[彭能岭, 李文洪, 江少恩, 袁晓东, 唐军, 刘永刚 2002 强激光与粒子束 14 254]

    [9]

    Li Z Y, Chen B Q 2016 Physics 45 188 (in Chinese)[李志远, 陈宝琴 2016 物理 45 188]

    [10]

    Bloembergen N 1965 Nonlinear Optics (New York:Benjamin) p8

    [11]

    Knight J C 2003 Nature 424 847

    [12]

    Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547

    [13]

    Russell P S J 2006 J. Lightwave Technol. 24 4729

    [14]

    Yelin D, Silberberg Y 1999 Opt. Express 5 169

    [15]

    Akimov D A, Ivanov A A, Alfimov M V, Grabchak E P, Shtykova A A, Petrov A N, Podshivalov A A, Zheltikov A M 2003 J. Raman Spectrosc. 34 1007

    [16]

    Serebryannikov E E, Fedotov A B, Zheltikov A M, Ivanov A, Alfimov M V, Knight J C 2006 J. Opt. Soc. Am. B 23 1975

    [17]

    Konorov S O, Fedotov A B, Serebryannikov E E, Mitrokhin V P, Sidorovbiryukov D A, Zheltikov A M 2005 J. Raman Spectrosc. 36 129

    [18]

    Liu B W, Hu M L, Wang S J, Chai L, Wang Q Y, Dai N L, Li J Y, Zheltikov A M 2010 Opt. Lett. 35 3958

    [19]

    Fedotov A B, Voronin A A, Serebryannikov E E, Fedotov I V, Mitrofanov A V, Ivanov A A, Sidorovbiryukov D A, Zheltikov A M 2007 Phys. Rev. E 75 16614

    [20]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 2567

    [21]

    Efimov A, Taylor A J, Omenetto F G, Knight J C, Wadsworth W J, Russell P S J 2003 Opt. Lett. 11 910

    [22]

    Zheltikov A M 2005 Phys. Rev. A 72 43812

    [23]

    Zhang H Q, Wang P, Liu W J 2016 Chin. Phys. B 25 024209

  • [1] Yuan Jin-Jian, Gu Min, Huang Run-Sheng. Phase matching of electromagnetic wave on moving interface. Acta Physica Sinica, 2024, 73(13): 134201. doi: 10.7498/aps.73.20240269
    [2] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [3] Du Qian, Chen Yi-Hang. Enhancing third-harmonic generation by quasi bound states in continuum in silicon nanoparticle arrays. Acta Physica Sinica, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [4] Fan Xin, Liang Hong-Jing, Shan Li-Yu, Yan Bo, Gao Qing-Hua, Ma Ri, Ding Da-Jun. Extreme ultraviolet polarization vortex beam based on high harmonic generation. Acta Physica Sinica, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [5] Yang Jiu-Long, Yuan Qing-Chen, Chen Run-Feng, Fang Han-Lin, Xiao Fa-Jun, Li Jun-Tao, Jiang Bi-Qiang, Zhao Jian-Lin, Gan Xue-Tao. Enhanced third-harmonic generation in silicon metasurface. Acta Physica Sinica, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [6] Li Jian-She, Li Shu-Guang, Zhao Yuan-Yuan, Liu Qiang, Fan Zhen-Kai, Wang Guang-Yao. Experimental studies of two sets of four-wave mixing processes in a single-zero-dispersion microstructured fiber by the same pump. Acta Physica Sinica, 2016, 65(21): 214201. doi: 10.7498/aps.65.214201
    [7] Li Xiao-Ming, Shen Xue-Ju, Liu Xun, Wang Lin. Study on temperature adaptability extension of KTP frequency-doubling device. Acta Physica Sinica, 2015, 64(9): 094205. doi: 10.7498/aps.64.094205
    [8] Chen Han-Wu, Li Ke, Zhao Sheng-Mei. Quantum walk search algorithm based on phase matching and circuit cmplementation. Acta Physica Sinica, 2015, 64(24): 240301. doi: 10.7498/aps.64.240301
    [9] Liu Zuo-Ye, Shi Yan-Chao, Hu Bi-Tao. Efficient generation of third harmonic radiation of air filament induced by plasma grating. Acta Physica Sinica, 2014, 63(18): 184206. doi: 10.7498/aps.63.184206
    [10] Zhao Xing-Tao, Zheng Yi, Han Ying, Zhou Gui-Yao, Hou Zhi-Yun, Shen Jian-Ping, Wang Chun, Hou Lan-Tian. Generation of visible and infrared broadband dispersive waves in photonic crystal fiber cladding. Acta Physica Sinica, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [11] Ren Ai-Hong, Liu Zheng-Ying, Zhang Rong-Zhu, Liu Jing-Lun, Sun Nian-Chun. Bandwidth in qusai-phase-matched frequency doubling. Acta Physica Sinica, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [12] Ma Jing, Liu Ying. Group velocity matching in femtosecond optical parametric amplification of the KBe2BO3F2. Acta Physica Sinica, 2009, 58(7): 4697-4701. doi: 10.7498/aps.58.4697
    [13] Zhou Cheng, Gao Yan-Xia, Wang Pei-Ji, Zhang Zhong, Li Ping. Theoretical analysis of second-harmonic conversion efficiency in negative-index materials. Acta Physica Sinica, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [14] Li Kun, Xu Miao-Hua, Jin Zhan, Liu Yun-Quan, Wang Zhao-Hua, Ling Wei-Jun, Zhang Jie. Polarization dependence of third-harmonics and spectral modulation properties of supercontinuum radiation from plasmas channels generated by femtosecond laser pulses propagation in air. Acta Physica Sinica, 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [15] Liu Jian-Guo, Kai Gui-Yun, Xue Li-Fang, Zhang Chun-Shu, Liu Yan-Ge, Wang Zhi, Guo Hong-Lei, Li Yan, Sun Ting-Ting, Yuan Shu-Zhong, Dong Xiao-Yi. A all-optical switching based on highly nolinear photonic crystal fiber Sagnac loop mirror. Acta Physica Sinica, 2007, 56(2): 941-945. doi: 10.7498/aps.56.941
    [16] Chen Liang, Liang Chang-Hong, Dang Xiao-Jie. Second-harmonic generation in nonlinear left-handed metamaterials. Acta Physica Sinica, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [17] Jian Ya-Qing, Yan Pei-Guang, Lü Ke-Cheng, Zhang Tie-Qun, Zhu Xiao-Nong. Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber. Acta Physica Sinica, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [18] Chen Bao-Zhen, Huang Zu-Qia. Efficiency of the third-order harmonic in gas-filled capillary driven by fs laser pulses. Acta Physica Sinica, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [19] Hao Zuo-Qiang, Zhang Jie, Zhang Zhe, Xi Ting-Ting, Zheng Zhi-Yuan, Yuan Xiao-Hui, Wang Zhao-Hua. Third harmonic generation in plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [20] Shao Zhong-Hao. . Acta Physica Sinica, 2001, 50(1): 73-78. doi: 10.7498/aps.50.73
Metrics
  • Abstract views:  6230
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2016
  • Accepted Date:  28 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map