Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adaptive gating for low signal-to-noise ratio non-line-of-sight imaging

LI Min LUO Yihan LI Tailin ZHAO Kaiyuan TAN Yi XIE Zongliang

Citation:

Adaptive gating for low signal-to-noise ratio non-line-of-sight imaging

LI Min, LUO Yihan, LI Tailin, ZHAO Kaiyuan, TAN Yi, XIE Zongliang
cstr: 32037.14.aps.74.20241535
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Non-line-of-sight (NLOS) imaging is an emerging optical imaging technique used for detecting hidden targets outside the line of sight. Due to multiple diffuse reflections, the signal echoes are weak, and gated single-photon avalanche diode (SPAD) plays a pivotal role in signal detection under low signal-to-noise ratio (SNR) conditions. However, when gated SPAD is used for detecting a target signal, existing methods often depend on prior information to preset the gate width, which cannot fully mitigate non-target signal interference or signal loss. Additionally, these methods encountered some problems such as large data acquisition volumes and lengthy processing times. To address these challenges, an adaptive gating algorithm is proposed in this work based on the principle of maximizing the distance from the vertex of a triangle to its base. The algorithm possesses advantages of the linear variation in scan point positions and the echo information from specific feature points. It can automatically identify echo signals and compute their widths without additional prior information or manual intervention. This method reduces the amount of data collected, improves processing efficiency, and has other benefits. Moreover, a confocal NLOS imaging system based on gated SPAD is developed to validate the proposed algorithm. The work further quantitatively evaluates the enhancement of target signal detection and image quality achieved by gated SPAD, and compares its imaging performance with leading NLOS image reconstruction algorithms. Experimental results demonstrate that the adaptive gating algorithm can effectively identify echo signals, facilitate automatic adjustment of gating parameters, and significantly improve target imaging quality while reducing data acquisition volume and enhancing processing efficiency.
      Corresponding author: LUO Yihan, luo.yihan@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271468).
    [1]

    Kirmani A, Hutchison T, Davis J, Raskar R 2009 IEEE 12th International Conference on Computer Vision Kyoto, Japan, September 29–October 2, 2009 p159

    [2]

    Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi M G, Raskar R 2012 Nat. Commun. 3 745Google Scholar

    [3]

    Victor A, Diego G, Adrian J 2017 Opt. Express 25 11574Google Scholar

    [4]

    O’Toole M, Lindell D B, Wetzstein G 2018 Nature 555 338Google Scholar

    [5]

    Lindell D B, Wetzstein G, O’Toole M 2019 ACM T. Graphic. 38 116

    [6]

    Xin S, Nousias S, Kutulakos K N, Sankaranarayanan A C, Narasimhan S G, Gkioulekas I 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Long Beach, CA, USA, June 15–19, 2019 p6793

    [7]

    Liu X C, Guillén I, La Manna M, Nam J H, Reza S A, Huu Le T, Jarabo A, Gutierrez D, Velten A 2019 Nature 572 620Google Scholar

    [8]

    Young S I, Lindell D B, Girod B, Taubman D, Wetzstein G 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Seattle, WA, USA, June 14–19, 2020 p1404

    [9]

    Chen X J, Li M Y, Chen T T, Zhan S Y 2023 Photonics 10 25Google Scholar

    [10]

    Plack M, Callenberg C, Schneider M, Hullin M B 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Waikoloa, HI, USA, January 2–7, 2023 p3066

    [11]

    Shen S Y, Wang Z, Liu P, Pan Z Q, Li R Q, Gao T, Li S Y, Yu J Y 2021 IEEE T. Pattern Anal. 43 2257Google Scholar

    [12]

    吴嘉伟 2021 硕士学位论文 (长沙: 湖南大学)

    Wu J W 2021 M. S. Thesis (Changsha: Hunan University

    [13]

    任禹, 罗一涵, 徐少雄, 马浩统, 谭毅 2021 光电工程 48 84

    Ren Y, Luo Y H, Xu S X, Ma H T, Tan Y 2021 Opto-Electron. Eng. 48 84

    [14]

    唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷 2023 72 014210Google Scholar

    Tang J Y, Luo Y H, Xie Z L, Xia S Y, Liu Y Q, Xu S X, Ma H T, Cao L 2023 Acta Phys. Sin. 72 014210Google Scholar

    [15]

    郑海洋, 罗一涵, 李泰霖, 唐佳瑶, 刘雅卿, 夏诗烨, 吴琼雁, 谢宗良 2023 光电工程 50 101

    Zheng H Y, Luo Y H, Li T L, Tang J Y, Liu Y Q, Xia S Y, Wu Q Y, Xie Z L 2023 Opto-Electron. Eng. 50 101

    [16]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F H, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [17]

    Wu C, Liu J J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X K, Goyal V K, Xu F H, Pan J W 2021 PNAS 118 e2024468118Google Scholar

    [18]

    Liu X T, Wang J Y, Xiao L P, Shi Z Q, Fu X, Qiu L Y 2023 Nat. Commun. 14 3230Google Scholar

    [19]

    Laurenzis M, Velten A 2014 J. Electron. Imag. 23 063003Google Scholar

    [20]

    Buttafava M, Zeman J, Tosi A, Eliceiri K, Velten A 2015 Opt. Express 23 20997Google Scholar

    [21]

    Zhu S Y, Sua Y M, Rehain P, Huang Y P 2021 Opt. Express 29 40865Google Scholar

    [22]

    Zhao J X, Gramuglia F, Keshavarzian P, Toh E H, Tng M, Lim L 2024 IEEE J. Sel. Top. Quant. 30 8000110Google Scholar

    [23]

    Luo Y H, Xie Z L, Xu S X, Ma H T, Ren Y, Cao L 2020 China Patent CN202010742670.6 [2020-06-28]

  • 图 1  非视域成像与门控工作原理

    Figure 1.  Working principle of non-line-of-sight imaging and gate control.

    图 2  门控SPAD探测效果 (a) 自由模式下回波信号信息; (b) 门控模式下目标回波信号信息

    Figure 2.  Detection performance of gated SPAD: (a) Echo signal information in free mode; (b) echo signal information for the third signal in gated mode.

    图 3  中介面回波信号抑制设置示意图 (a)中介面回波信号示意图; (b), (c)常规方法; (d)三角定位方法

    Figure 3.  Schematic diagram of intermediate echo signal suppression settings: (a) Schematic diagram of the intermediates echo signal; (b), (c) conventional methods; (d) triangulation method.

    图 4  中介面回波信号处理过程 (a) 使用门控SPAD采集的某点回波信号; (b) 该回波信号循环位移后的结果; (c) 左半信号处理结果; (d) 右半信号处理结果

    Figure 4.  Signal processing procedure for the interface echo signal: (a) Echo signal acquired using gated SPAD at a certain point; (b) result after cyclic shift of the echo signal; (c) result of processing the left half of the signal; (d) result of processing the right half of the signal.

    图 5  扫描面各采集点回波位置变化示意图

    Figure 5.  Schematic diagram of the change of echo position at each point of the scanning surface.

    图 6  扫描面各扫描点位置推导示意图 (a)扫描阵列示意图; (b), (c)利用特征点计算各扫描点示意图

    Figure 6.  Schematic diagram of the position of each scan point on the scanning surface: (a) Schematic diagram of the scanning array; (b), (c) schematic diagram of calculating each scanning point using characteristic points.

    图 7  自适应门控控制算法示意图

    Figure 7.  Schematic diagram of the adaptive gate control algorithm.

    图 8  实际搭建系统 (a)基于SPAD的共焦非视域成像系统; (b)搭建的非视域成像场景

    Figure 8.  Actual system setup: (a) Confocal non-line-of-sight imaging system based on SPAD; (b) constructed non-line-of-sight imaging scene.

    图 9  中介面信号实际抑制示意图 (a)实际采集中介面回波信号; (b), (c)常规方法; (d)三角定位方法

    Figure 9.  Schematic diagram of the actual suppression of the intermediary signal: (a) Actual collection of intermediates echo signals; (b), (c) conventional approach; (d) triangulation method.

    图 10  中介面回波信号抑制结果 (a)某点中介面回波信号; (b)某点中介面回波信号识别结果; (c)抑制中介面回波信号后的目标回波信号

    Figure 10.  Suppression results of intermediate surface echo signal: (a) Echo signal for the intermediate interface midpoint; (b) result of identifying the echo signal of an intermediary surface at a certain point; (c) target echo signal after suppressing the intermediate interface echo signal.

    图 11  中介面回波信号位置与宽度计算结果 (a)左上顶点中介面回波信号位置与宽度计算结果; (b)右上顶点中介面回波信号位置与宽度计算结果; (c)左下顶点中介面回波信号位置与宽度计算结果; (d)右下顶点中介面回波信号位置与宽度计算结果; (e)自适应计算结果和直接计算结果对比图; (f)计算结果细节图

    Figure 11.  Results of the adaptive gated control algorithm: (a) Calculated position and width of the interface echo signal at the top-left vertex; (b) calculated position and width of the interface echo signal at the top-right vertex; (c) calculated position and width of the interface echo signal at the bottom-left vertex; (d) calculated position and width of the interface echo signal at the bottom-right vertex; (e) comparison of adaptive algorithm results and direct calculation results; (f) detailed plot of the calculated results.

    图 12  一次回波对目标信号作用 (a)—(c)移动门位置示意图; (d)未抑制一次回波的回波信号图; (e)抑制一半一次回波的回波信号图; (f)完全抑制一次回波的回波信号图

    Figure 12.  Effect of single echo on the target signal: (a)–(c) Schematic diagram of the moving gate position; (d) echo signal diagram without suppressing the single echo; (e) diagram of the echo signal with half of the single echo suppressed; (f) diagram of the echo signal with the single echo completely suppressed.

    图 13  门控SPAD对目标回波信号影响 (a)自由模式下隐藏目标5回波信号; (b)门控模式下隐藏目标5回波信号; (c)自由模式下隐藏目标T回波信号; (d)门控模式下隐藏目标T回波信号

    Figure 13.  Impact of gated SPAD on target echo signals: (a) Hidden target 5 echo signal in free-running mode; (b) hidden target 5 echo signal in gated mode; (c) hidden target T echo signal in free-running mode; (d) hidden target T echo signal in gated mode.

    图 14  不同模式重建结果对比 (a)自由模式下目标重构结果; (b)固定门宽未抑制一次回波的目标重构结果; (c)固定门宽抑制一次回波的目标重构结果; (d)本文自适应门控控制算法目标重构结果

    Figure 14.  Comparison of different mode reconstruction results: (a) Reconstruction result under free mode; (b) reconstruction result without suppressing the first echo with fixed gate width; (c) reconstruction result with fixed gate width suppressing the first echo; (d) reconstruction result using the proposed adaptive gate control algorithm in this paper.

    图 15  不同方法重建结果 (a) BP算法; (b) F-K算法; (c) V-W算法; (d) LCT算法; (e)本文自适应门控的LCT算法

    Figure 15.  Reconstruction results using different methods: (a) BP algorithm; (b) F-K algorithm; (c) V-W algorithm; (d) LCT algorithm; (e) adaptive LCT algorithm in this work.

    表 1  不同方法中介面位置的对比

    Table 1.  Comparison of the results of different method.

    采集信号常规方法
    抑制
    常规方法
    抑制
    三角定位法
    抑制
    起点1103111810901105
    终点1181114511701178
    宽度/ns0.780.270.80.73
    DownLoad: CSV

    表 2  不同方法对中介面回波信号抑制结果偏差对比

    Table 2.  Comparison of the deviation in suppression results of interface echo signals using different methods.

    起点终点宽度/ns
    常规方法抑制情形一15360.51
    常规方法抑制情形二1390.02
    三角定位法抑制230.05
    DownLoad: CSV

    表 3  自适应计算机果和直接计算结果对比

    Table 3.  Comparison of adaptive algorithm results and direct calculation results

    起点终点宽度/ns
    自适应计算312732571.31
    实际采集计算311032511.41
    偏差/ns0.170.060.11
    DownLoad: CSV

    表 4  一次回波对目标回波信号的影响

    Table 4.  Impact of primary echo on the target echo signal.

    未抑制一次
    回波信号
    抑制一半一次
    回波信号
    完全抑制一次
    回波信号
    一次回波峰值 36190 8811 0
    目标回波峰值 372 952 805
    信号信噪比 16.79 19.48 28.75
    主观 目标信号被淹没 目标信号可见 目标信号突出
    DownLoad: CSV

    表 5  门控SPAD对目标回波信号的影响

    Table 5.  Impact of gated single-photon avalanche diode on the target echo signal.

    目标5信号
    (自由模式)
    目标5信号(门控模式)目标T信号
    (自由模式)
    目标T信号
    (门控模式)
    目标回波峰值3548025445
    信号信噪比6.7925.546.1523.21
    主观目标波形可见目标波形清晰目标波形可见目标波形清晰
    DownLoad: CSV

    表 6  不同方法采集数据量、耗时对比

    Table 6.  Comparison of data collection volume and time consumption across different methods.

    数据采集量耗时/T
    自由模式一次逐点扫描1
    未抑制中介面回波信号一次逐点扫描1
    抑制中介面回波信号两次逐点扫描2
    自适应门控控制算法一次逐点扫描+
    四个特征点
    ≈1
    DownLoad: CSV

    表 7  不同模式下成像质量对比

    Table 7.  Comparison of imaging quality under different modes.

    自由模式 未抑制中介面
    回波信号
    抑制中介面
    回波信号
    自适应门控
    控制算法
    峰值
    信噪比
    6.94 9.52 10.70 11.4932
    结构
    相似度
    0.56 0.73 0.81 0.8466
    相关系数 0.007 0.31 0.56 0.64885
    主观 无法识别
    目标
    可见目标
    轮廓
    目标轮廓
    清晰
    目标轮廓
    清晰
    DownLoad: CSV

    表 8  不同目标重构质量对比

    Table 8.  Reconstruction quality comparison of different objects.

      评价指标  BP F-K V-W LCT 本文
    目标5 峰值信噪比 7.0311 10.15 8.9784 10.7017 11.4932
    结构相似度 0.6443 0.7873 0.7408 0.8107 0.8466
    相关系数 0.4545 0.5098 0.5315 0.5703 0.6489
    主观 目标模糊 可见目标轮廓 目标轮廓清晰 目标轮廓清晰 目标轮廓清晰
    目标L 峰值信噪比 7.1744 9.543 8.4819 11.179 11.3109
    结构相似度 0.6689 0.7781 0.7825 0.8535 0.8621
    相关系数 0.386 0.4459 0.5093 0.6014 0.6587
    主观 目标模糊 可见目标轮廓 目标轮廓清晰 目标轮廓清晰 目标轮廓清晰
    目标H 峰值信噪比 8.8224 9.4324 9.4568 10.1954 10.558
    结构相似度 0.7477 0.8071 0.8163 0.8417 0.8564
    相关系数 0.6077 0.4839 0.5092 0.6017 0.6275
    主观 目标模糊 可见目标轮廓 目标轮廓清晰 目标轮廓清晰 目标轮廓清晰
    目标Plane 峰值信噪比 9.8436 11.6533 11.4687 12.2066 11.9239
    结构相似度 0.7745 0.8545 0.8465 0.8533 0.8608
    相关系数 0.6019 0.5541 0.6223 0.6524 0.6325
    主观 目标模糊 可见目标轮廓 目标轮廓清晰 目标轮廓清晰 目标轮廓清晰
    目标T 峰值信噪比 7.9285 11.1673 11.2831 12.7401 12.604
    结构相似度 0.6883 0.8106 0.8328 0.8812 0.877
    相关系数 0.6566 0.6714 0.7388 0.7102 0.7696
    主观 目标模糊 可见目标轮廓 目标轮廓清晰 目标轮廓清晰 目标轮廓清晰
    DownLoad: CSV
    Baidu
  • [1]

    Kirmani A, Hutchison T, Davis J, Raskar R 2009 IEEE 12th International Conference on Computer Vision Kyoto, Japan, September 29–October 2, 2009 p159

    [2]

    Velten A, Willwacher T, Gupta O, Veeraraghavan A, Bawendi M G, Raskar R 2012 Nat. Commun. 3 745Google Scholar

    [3]

    Victor A, Diego G, Adrian J 2017 Opt. Express 25 11574Google Scholar

    [4]

    O’Toole M, Lindell D B, Wetzstein G 2018 Nature 555 338Google Scholar

    [5]

    Lindell D B, Wetzstein G, O’Toole M 2019 ACM T. Graphic. 38 116

    [6]

    Xin S, Nousias S, Kutulakos K N, Sankaranarayanan A C, Narasimhan S G, Gkioulekas I 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Long Beach, CA, USA, June 15–19, 2019 p6793

    [7]

    Liu X C, Guillén I, La Manna M, Nam J H, Reza S A, Huu Le T, Jarabo A, Gutierrez D, Velten A 2019 Nature 572 620Google Scholar

    [8]

    Young S I, Lindell D B, Girod B, Taubman D, Wetzstein G 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Seattle, WA, USA, June 14–19, 2020 p1404

    [9]

    Chen X J, Li M Y, Chen T T, Zhan S Y 2023 Photonics 10 25Google Scholar

    [10]

    Plack M, Callenberg C, Schneider M, Hullin M B 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Waikoloa, HI, USA, January 2–7, 2023 p3066

    [11]

    Shen S Y, Wang Z, Liu P, Pan Z Q, Li R Q, Gao T, Li S Y, Yu J Y 2021 IEEE T. Pattern Anal. 43 2257Google Scholar

    [12]

    吴嘉伟 2021 硕士学位论文 (长沙: 湖南大学)

    Wu J W 2021 M. S. Thesis (Changsha: Hunan University

    [13]

    任禹, 罗一涵, 徐少雄, 马浩统, 谭毅 2021 光电工程 48 84

    Ren Y, Luo Y H, Xu S X, Ma H T, Tan Y 2021 Opto-Electron. Eng. 48 84

    [14]

    唐佳瑶, 罗一涵, 谢宗良, 夏诗烨, 刘雅卿, 徐少雄, 马浩统, 曹雷 2023 72 014210Google Scholar

    Tang J Y, Luo Y H, Xie Z L, Xia S Y, Liu Y Q, Xu S X, Ma H T, Cao L 2023 Acta Phys. Sin. 72 014210Google Scholar

    [15]

    郑海洋, 罗一涵, 李泰霖, 唐佳瑶, 刘雅卿, 夏诗烨, 吴琼雁, 谢宗良 2023 光电工程 50 101

    Zheng H Y, Luo Y H, Li T L, Tang J Y, Liu Y Q, Xia S Y, Wu Q Y, Xie Z L 2023 Opto-Electron. Eng. 50 101

    [16]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F H, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [17]

    Wu C, Liu J J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X K, Goyal V K, Xu F H, Pan J W 2021 PNAS 118 e2024468118Google Scholar

    [18]

    Liu X T, Wang J Y, Xiao L P, Shi Z Q, Fu X, Qiu L Y 2023 Nat. Commun. 14 3230Google Scholar

    [19]

    Laurenzis M, Velten A 2014 J. Electron. Imag. 23 063003Google Scholar

    [20]

    Buttafava M, Zeman J, Tosi A, Eliceiri K, Velten A 2015 Opt. Express 23 20997Google Scholar

    [21]

    Zhu S Y, Sua Y M, Rehain P, Huang Y P 2021 Opt. Express 29 40865Google Scholar

    [22]

    Zhao J X, Gramuglia F, Keshavarzian P, Toh E H, Tng M, Lim L 2024 IEEE J. Sel. Top. Quant. 30 8000110Google Scholar

    [23]

    Luo Y H, Xie Z L, Xu S X, Ma H T, Ren Y, Cao L 2020 China Patent CN202010742670.6 [2020-06-28]

  • [1] Tang Jia-Yao, Luo Yi-Han, Xie Zong-Liang, Xia Shi-Ye, Liu Ya-Qing, Xu Shao-Xiong, Ma Hao-Tong, Cao Lei. Non-line-of-sight imaging algorithm based on Wiener filtering of mid-frequency. Acta Physica Sinica, 2023, 72(1): 014210. doi: 10.7498/aps.72.20221600
    [2] Shi Ping, Ma Jian, Qian Xuan, Ji Yang, Li Wei. Signal-to-noise ratio of spin noise spectroscopy in rubidium vapor. Acta Physica Sinica, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [3] Liu Xue-Feng, Yao Xu-Ri, Li Ming-Fei, Yu Wen-Kai, Chen Xi-Hao, Sun Zhi-Bin, Wu Ling-An, Zhai Guang-Jie. The role of intensity fluctuations in thermal ghost imaging. Acta Physica Sinica, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [4] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [5] Huang Liang-Min, Ding Zhi-Hua, Hong Wei, Wang Chuan. Correlated Doppler optical coherence tomography. Acta Physica Sinica, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [6] Ma Aai-Ru, Sui Zhan, Feng Guo-Ying, Sun Nian-Chun, Wang Yi-Shan, Zhang Bin, Chen Jian-Guo. Theoretical analysis on scanning spectral filter method for signal-noise-ratio improvment in femtosecond laser system. Acta Physica Sinica, 2012, 61(7): 074206. doi: 10.7498/aps.61.074206
    [7] Zeng Bing, Zeng Shu-Guang, Zhang Bin, Sun Nian-Chun, Sui Zhan. A scanning filtering method for enhancing the signal-to-noise ratio of chirped laser pulse. Acta Physica Sinica, 2012, 61(15): 154209. doi: 10.7498/aps.61.154209
    [8] Li Wei-Chang, Wang Zhao-Hua, Liu Cheng, Teng Hao, Wei Zhi-Yi. Contrast ratio of femtosecond ultraintense Ti:sapphire laser with multi-pass amplifier. Acta Physica Sinica, 2011, 60(12): 124210. doi: 10.7498/aps.60.124210
    [9] Wang De-Jiang, Kuang Hai-Peng. Experimental study of the effects on signal noise ratio and dynamic range caused by analog gain for CCD. Acta Physica Sinica, 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [10] Zhang Er-Feng, Dai Hong-Yi. Effect of light polarization on thermal light correlated imaging. Acta Physica Sinica, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [11] Zhang Yi-Chi, Wu Ji-Zhou, Ma Jie, Zhao Yan-Ting, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Research on improve the SNR of ultracold cesium molecule rovibronic spectrum via best optimization parameter control. Acta Physica Sinica, 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [12] Zhang Chun-Min, Huang Wei-Jian, Zhao Bao-Chang. Analysis and evaluation on the noise of novel polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(8): 5479-5486. doi: 10.7498/aps.59.5479
    [13] Li Xue-Xia, Feng Jiu-Chao. A blind separation method for chaotic signals. Acta Physica Sinica, 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [14] Analyzing the noise resistance effect for two chaos secure systems. Acta Physica Sinica, 2007, 56(12): 6857-6864. doi: 10.7498/aps.56.6857
    [15] Zhou Bing-Chang, Xu Wei. Stochastic resonance in an asymmetric bistable system driven by mixed periodic force and noises. Acta Physica Sinica, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [16] Dong Xiao-Juan. Stochastic resonance in an asymmetric bistable system with time-delayed feedback and correlated noises. Acta Physica Sinica, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [17] Yuan Zhi-Lin, Zhang Chun-Min, Zhao Bao-Chang. Study of SNR of a novel polarization interference imaging spectrometer. Acta Physica Sinica, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [18] Li Yue, Lu Peng, Yang Bao-Jun, Zhao Xue-Ping. Applying a special kind of two coupled Duffing oscillator system to detect periodic signals under the background of strong colored noise. Acta Physica Sinica, 2006, 55(4): 1672-1677. doi: 10.7498/aps.55.1672
    [19] Jin Yan-Fei, Xu Wei, Li Wei, Xu Meng. Stochastic resonance for periodically modulated noise in a linear system. Acta Physica Sinica, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [20] Xu Wei, Jin Yan-Fei, Xu Meng, Li Wei. Stochastic resonance for bias-signal-modulated noise in a linear system. Acta Physica Sinica, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
Metrics
  • Abstract views:  624
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2024
  • Accepted Date:  19 December 2024
  • Available Online:  02 January 2025
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map