Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of meta-surface lens integrated with pupil filter

ZHONG Runhui LING Jinzhong LI Yangyang YANG Xudong WANG Xiaorui

Citation:

Design of meta-surface lens integrated with pupil filter

ZHONG Runhui, LING Jinzhong, LI Yangyang, YANG Xudong, WANG Xiaorui
cstr: 32037.14.aps.74.20241490
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Metasurface lenses are miniature flat lenses that can precisely control the phase, amplitude, and polarization of incident light by modulating the parameters of each unit on the substrate. Compared with conventional optical lenses, they have the advantages of small size, light weight, and high integration, and are the core components of photonic chips. Currently, the hot topics for metasurface lens are broadband and achromatic devices, and there is still less attention paid to the resolution improvement. To break through the diffraction limit and further improve the focusing performance and imaging resolution of metasurface lenses, we use unit cells to perform multi-dimensional modulation of the incident light field. Specifically, in this paper, we combine phase modulation of metasurface lens with a pupil filtering, which has been widely applied to traditional microscopy imaging and adaptive optics and has demonstrated powerful resolution enhancement effects. The integrating of these two technologies will continue to improve the imaging performance of metasurface lenses and thus expanding their application fields.In this work, we firstly design a single-cell super-surface lens composed of a silicon nanofin array and a silica substrate as a benchmark for comparing the performance of integrated super-surface lens. The lens achieves an ideal focal spot for incident light at 633 nm, resulting in a full width at half maximum (FWHM) of 376.0 nm. Then, a three-zone phase modulating pupil filter is proposed and designed with the same aperture of metasurface lens, which has a phase jump of 0-π-0 from the inside to the outside of the aperture. From the simulation results, the main lobe size of the focal spot is compressed obviously. In the optimization, its structural parameters are scanned for the best performance, and an optimal set of structural parameters is selected and used in the integrated metasurface lens. Finally, the integrated metasurface lens is designed by combining the metasurface lens with a three-zone phase modulating pupil filter, and the FWHM of its focal spot is compressed to 323.4 nm (≈ 0.51λ), which is not only 15% smaller than original metasurface lens’s FWHM of 376.0 nm, but also much smaller than the diffraction limit of 0.61λ/NA (when NA = 0.9, it is approximately 429.0 nm). This result preliminarily demonstrates the super-resolution performance of the integrated super-surface lens. With the comprehensive regulation of multi-dimensional information, such as amplitude, polarization, and vortex, the integrated super-surface optical lens will achieve more excellent super-resolution focusing and imaging performance, and will also be widely used in the fields of super-resolution imaging, virtual reality, and three-dimensional optical display, due to its characteristics of high resolution, high integration, and high miniaturization.
      Corresponding author: LING Jinzhong, jzling@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075176, 62005206, 51802243), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2024JC-YBMS-460), and the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, China (Grant No. SKLST202208).
    [1]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508Google Scholar

    [2]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [3]

    West P R, Stewart J L, Kildishev A V, et al. 2014 Opt. Express 22 26212Google Scholar

    [4]

    Li S H, Li J S 2019 Aip Adv. 9 035146Google Scholar

    [5]

    Marlek S C, Ee H S, Agarwal R 2017 Nano Lett. 17 3641Google Scholar

    [6]

    Cai B, Wu L, Zhu X W, Cheng Z Z, Cheng Y Z 2024 Res. Phys. 58 107509

    [7]

    Li Y L, Xu J F, Liu, F H, Xu L Z, Fang B, Li, C X 2024 Phys. Scripta 99 075536Google Scholar

    [8]

    Khorasaninejad M, Capasso F 2017 Science 358 6367Google Scholar

    [9]

    Hu T, Xia R, Wang S C, Yang Z Y, Zhao M 2024 J. Phys. D: Appl. Phys. 57 355103Google Scholar

    [10]

    徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 72 014208Google Scholar

    Xu P, Li X C, Xiao Y F, Yang T, Zhang X L, Huang H X, Wang M Y, Yuan X, Xu H D 2023 Acta Phys. Sin. 72 014208Google Scholar

    [11]

    Zhang Q S, Guo D, Shen C S, Chen Z F, Bai N F 2024 Phys. Scripta 99 015516Google Scholar

    [12]

    di Francia G T 1952 Il Nuovo Cimento 9 426Google Scholar

    [13]

    Luo Z Y, Kuebler S M 2014 Opt. Commun. 315 176Google Scholar

    [14]

    Chakraborty S, Bera S C, Chakraborty A K 2011 Optik 122 549

    [15]

    王吉明, 赫崇军, 刘友文, 杨凤, 田威, 吴彤 2016 65 044202Google Scholar

    Wang J M, He C J, Liu Y W, Yang F, Tian Wei, Wu T 2016 Acta Phys. Sin. 65 044202Google Scholar

    [16]

    Liu S, Qi S X, Li Y K, Wei B Y, Li P, Zhao J L 2022 Light Sci. Appl. 11 219

    [17]

    丁洪萍, 李庆辉, 邹文艺 2004 光学学报 24 1177Google Scholar

    Ding H P, Li Q H, Zou W Y 2004 Acta Opt. Sin. 24 1177Google Scholar

    [18]

    Toshiyuki H, Katsuhiro H, Seitaro M 2019 Denki Kagaku oyobi Kogyo Butsuri Kagaku 63 536

    [19]

    赵丽娜 2018 博士学位论文 (成都: 电子科技大学)

    Zhao L N 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [20]

    刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [21]

    陈俊林, 莫德锋, 蒋梦蝶, 朱海勇 2024 中国激光 51 1310001Google Scholar

    Chen J L, Mo D F, Jiang M D, Zhu H Y 2024 Chin. J. Lasers 51 1310001Google Scholar

  • 图 1  超表面透镜的微单元结构参数(a)和微单元的周期性排布(b)

    Figure 1.  Metasurface lens’ microcell structure parameters (a) and the periodic arrangement of microcells (b).

    图 2  相位随旋转角的变化曲线

    Figure 2.  Phase changes with the rotation angle of microcell.

    图 3  (a) x-y平面内焦斑的光强分布; (b) y-z平面成像内焦斑的光强分布; (c) x-y平面内的相位分布; (d) y-z平面内的相位分布

    Figure 3.  (a) Light intensity distributions in x-y plane for the focal spot; (b) light intensity distributions in y-z plane for the focal spot; (c) phase distributions in x-y plane for the focal spot; (d) phase distributions in y-z plane for the focal spot.

    图 4  三区相位型光瞳滤波器的结构示意图(a)和使用光路(b)

    Figure 4.  Structural diagram (a) and optical path (b) of the three-zone phase pupil filter.

    图 5  归一化光强分布对比 (a) r1 = 0.33, r2 = 0.67, r3 = 1; (b) r1 = 0.2, r2 = 0.8, r3 = 1; (c) r1 = 0.1, r2 = 0.9, r3 = 1

    Figure 5.  Comparison of normalized light intensity distribution: (a) r1 = 0.33, r2 = 0.67, r3 = 1; (b) r1 = 0.2, r2 = 0.8, r3 = 1; (c) r1 = 0.1, r2 = 0.9, r3 = 1.

    图 6  融合型超表面透镜的结构示意图

    Figure 6.  Structural diagram of the integrated metasurface lens.

    图 7  (a)单胞元超表面透镜y-z平面相位分布; (b)融合型超表面透镜y-z平面相位分布

    Figure 7.  (a) Single cell metasurface lens y-z plane phase distribution; (b) integrated type metasurface lens y-z plane phase distribution

    图 8  融合型超表面透镜焦斑处的光强分布 (a) 透镜焦平面上; (b) y-z平面

    Figure 8.  Light intensity distribution at the focal spot of integrated metasurface lens: (a) Focal plane image; (b) y-z plane.

    图 9  两种超表面透镜焦斑中心光强分布曲线对比

    Figure 9.  Comparison of normalized light intensity distributions of two metasurface lenses around the focal spot centrals.

    Baidu
  • [1]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508Google Scholar

    [2]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345 298Google Scholar

    [3]

    West P R, Stewart J L, Kildishev A V, et al. 2014 Opt. Express 22 26212Google Scholar

    [4]

    Li S H, Li J S 2019 Aip Adv. 9 035146Google Scholar

    [5]

    Marlek S C, Ee H S, Agarwal R 2017 Nano Lett. 17 3641Google Scholar

    [6]

    Cai B, Wu L, Zhu X W, Cheng Z Z, Cheng Y Z 2024 Res. Phys. 58 107509

    [7]

    Li Y L, Xu J F, Liu, F H, Xu L Z, Fang B, Li, C X 2024 Phys. Scripta 99 075536Google Scholar

    [8]

    Khorasaninejad M, Capasso F 2017 Science 358 6367Google Scholar

    [9]

    Hu T, Xia R, Wang S C, Yang Z Y, Zhao M 2024 J. Phys. D: Appl. Phys. 57 355103Google Scholar

    [10]

    徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东 2023 72 014208Google Scholar

    Xu P, Li X C, Xiao Y F, Yang T, Zhang X L, Huang H X, Wang M Y, Yuan X, Xu H D 2023 Acta Phys. Sin. 72 014208Google Scholar

    [11]

    Zhang Q S, Guo D, Shen C S, Chen Z F, Bai N F 2024 Phys. Scripta 99 015516Google Scholar

    [12]

    di Francia G T 1952 Il Nuovo Cimento 9 426Google Scholar

    [13]

    Luo Z Y, Kuebler S M 2014 Opt. Commun. 315 176Google Scholar

    [14]

    Chakraborty S, Bera S C, Chakraborty A K 2011 Optik 122 549

    [15]

    王吉明, 赫崇军, 刘友文, 杨凤, 田威, 吴彤 2016 65 044202Google Scholar

    Wang J M, He C J, Liu Y W, Yang F, Tian Wei, Wu T 2016 Acta Phys. Sin. 65 044202Google Scholar

    [16]

    Liu S, Qi S X, Li Y K, Wei B Y, Li P, Zhao J L 2022 Light Sci. Appl. 11 219

    [17]

    丁洪萍, 李庆辉, 邹文艺 2004 光学学报 24 1177Google Scholar

    Ding H P, Li Q H, Zou W Y 2004 Acta Opt. Sin. 24 1177Google Scholar

    [18]

    Toshiyuki H, Katsuhiro H, Seitaro M 2019 Denki Kagaku oyobi Kogyo Butsuri Kagaku 63 536

    [19]

    赵丽娜 2018 博士学位论文 (成都: 电子科技大学)

    Zhao L N 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [20]

    刘涛 2013 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu T 2013 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [21]

    陈俊林, 莫德锋, 蒋梦蝶, 朱海勇 2024 中国激光 51 1310001Google Scholar

    Chen J L, Mo D F, Jiang M D, Zhu H Y 2024 Chin. J. Lasers 51 1310001Google Scholar

  • [1] Yang Hao-Zhi, Nie Meng-Jiao, Ma Guang-Peng, Cao Hui-Qun, Lin Dan-Ying, Qu Jun-Le, Yu Bin. Digital micromirror device-based fast super-resolution lattice structured light illumination microscopy. Acta Physica Sinica, 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [2] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] Ling Jin-Zhong, Guo Jin-Kun, Wang Yu-Cheng, Liu Xin, Wang Xiao-Rui. Research on spatial frequency shift super-resolution imaging based on evanescent wave illumination. Acta Physica Sinica, 2023, 72(22): 224202. doi: 10.7498/aps.72.20230934
    [4] Ge Yang-Yang, He Zhuo-Fen, Huang Li-Lin, Lin Dan-Ying, Cao Hui-Qun, Qu Jun-Le, Yu Bin. Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [5] Flat-field multiplexed multifocal structured illumination super-resolution microscopy. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211712
    [6] Zhang Jia, Samanta Soham, Wang Jia-Lin, Wang Lu-Wei, Yang Zhi-Gang, Yan Wei, Qu Jun-Le. Study on a novel probe for stimulated emission depletion Super-resolution Imaging of Mitochondria. Acta Physica Sinica, 2020, 69(16): 168702. doi: 10.7498/aps.69.20200171
    [7] Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [8] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] Liu Xiong-Bo, Lin Dan-Ying, Wu Qian-Qian, Yan Wei, Luo Teng, Yang Zhi-Gang, Qu Jun-Le. Recent progress of fluorescence lifetime imaging microscopy technology and its application. Acta Physica Sinica, 2018, 67(17): 178701. doi: 10.7498/aps.67.20180320
    [10] Zhang Chong-Lei, Xin Zi-Qiang, Min Chang-Jun, Yuan Xiao-Cong. Research progress of plasmonic structure illumination microscopy. Acta Physica Sinica, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [11] Lin Dan-Ying, Qu Jun-Le. Recent progress on super-resolution imaging and correlative super-resolution microscopy. Acta Physica Sinica, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [12] Wang Ji-Ming, He Chong-Jun, Liu You-Wen, Yang Feng, Tian Wei, Wu Tong. The focused vectorial fields with ultra-long depth of focus generated by the tunable complex filter. Acta Physica Sinica, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [13] Liu Hong-Ji, Liu Shuang-Long, Niu Han-Ben, Chen Dan-Ni, Liu Wei. A super-resolution infrared microscopy based on a doughnut pump beam. Acta Physica Sinica, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [14] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [15] Li Heng, Yu Bin, Chen Dan-Ni, Niu Han-Ben. Design and experimental demonstration of high-efficiency double-helix point spread function phase plate. Acta Physica Sinica, 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [16] Zhao Wei-Qian, Tang Fang, Qiu Li-Rong, Liu Da-Li. Research status and application on the focusing properties of cylindrical vector beams. Acta Physica Sinica, 2013, 62(5): 054201. doi: 10.7498/aps.62.054201
    [17] Liang Gao-Feng, Zhao Qing, Chen Xin, Wang Chang-Tao, Zhao Ze-Yu, Luo Xian-Gang. Research of subwavelength grating based on multilayer films structure. Acta Physica Sinica, 2012, 61(10): 104203. doi: 10.7498/aps.61.104203
    [18] Zhou Chang-He, Yu Jun-Jie, Wang Wei. Transverse superresolution and extended axial focal depth realized by three-zone annular phase pupil filter. Acta Physica Sinica, 2011, 60(2): 024201. doi: 10.7498/aps.60.024201
    [19] Yun Mao-Jin, Wan Yong, Kong Wei-Jin, Wang Mei, Liu Jun-Hai, Liang Wei. Transverse superresolution and axial extended focal depth realized by the tunable phase pupil filter. Acta Physica Sinica, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
    [20] Liu Li, Deng Xiao-Qiang, Wang Gui-Ying, Xu Zhi-Zhan. . Acta Physica Sinica, 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
Metrics
  • Abstract views:  661
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2024
  • Accepted Date:  25 November 2024
  • Available Online:  25 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map