Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of drafting-kissing-tumbling movement of two particles with conjugate heat transfer

ZHANG Xiaojie ZHAO Qianqian HUANG Rongzong

Citation:

Investigation of drafting-kissing-tumbling movement of two particles with conjugate heat transfer

ZHANG Xiaojie, ZHAO Qianqian, HUANG Rongzong
cstr: 32037.14.aps.74.20241453
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The conjugate heat transfer at the particle-fluid interface and the collision between particles play a crucial role in the sedimentation process of particles. In this work, the recent volumetric lattice Boltzmann method for thermal particulate flows with conjugate heat transfer is adopted to investigate the drafting-kissing-tumbling movement in the sedimentation process of two particles in a closed channel. This volumetric lattice Boltzmann method is based on double distribution functions, with the density distribution function used for the velocity field and the internal energy distribution function used for the temperature field. It is a single-domain approach, and the nonslip velocity condition within the solid domain can be strictly ensured. The difference in thermophysical properties between the solid and fluid can be correctly handled, and the conjugate heat transfer condition can be automatically achieved without any additional treatments. Based on this particle-resolved simulation, the influences of the solid-to-fluid specific heat ratio, the Grashof number, and the particle’s initial temperature on the drafting-kissing-tumbling movement are discussed in detail. It is found that the fluid cooled by the particle and thus subjected to the downward buoyancy force can promote particle sedimentation. As the specific heat ratio increases, the particle’s temperature rises relatively slowly. In the sedimentation of two cold particles, the drafting duration and tumbling duration of the drafting-kissing-tumbling movement decrease when the heat capacity ratio increases. In contrast, the kissing duration increases as the heat capacity ratio increases. When the Grashof number increases, the heat transfer between the particle and fluid is enhanced, and the drafting duration significantly decreases while the kissing duration and tumbling duration remain almost unchanged in the sedimentation of two cold particles. The particle’s initial temperature greatly affects the occurrence moment of the drafting-kissing-tumbling movement. To be specific, the drafting-kissing-tumbling movement occurs at the earliest moment for the sedimentation of two cold particles, followed by the sedimentation of one cold and one hot particle, and the latest for the sedimentation of two hot particles. The promoting effect of the low particle’s initial temperature on the drafting-kissing-tumbling movement mainly takes place in the dragging stage and kissing stage. The particle’s initial temperature has almost no influence on the tumbling duration.
      Corresponding author: HUANG Rongzong, rongzong.huang@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52376086, 52006244).
    [1]

    Yang G C, Jing L, Kwok C Y, Sobral Y D 2019 Comput. Geotech. 114 103100Google Scholar

    [2]

    王尤富 2005 特种油气藏 12 91Google Scholar

    Wang Y F 2005 Special Oil Gas Reservoirs 12 91Google Scholar

    [3]

    Li H Y, Xue H R, Zhang J Y, Zhang G J 2023 Processes 11 2573Google Scholar

    [4]

    Nie D M, Lin J Z 2010 Commun. Comput. Phys. 7 544Google Scholar

    [5]

    Uhlmann M 2005 J. Comput. Phys. 209 448Google Scholar

    [6]

    Fortes A F, Joseph D D, Lundgren T S 1987 J. Fluid Mech. 177 467Google Scholar

    [7]

    Wang Z, Fan J, Luo K 2008 Int. J. Multiphase Flow 34 283Google Scholar

    [8]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95Google Scholar

    [9]

    Wang L, Guo Z, Mi J 2014 Comput. Fluids 96 20Google Scholar

    [10]

    Gan H, Chang J, Feng J J, Hu H H 2003 J. Fluid Mech. 481 385Google Scholar

    [11]

    仝志辉 2010 59 1884Google Scholar

    Tong Z H 2010 Acta Phys. Sin. 59 1884Google Scholar

    [12]

    毛威, 郭照立, 王亮 2013 62 084703Google Scholar

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703Google Scholar

    [13]

    刘汉涛, 常建忠, 安康, 苏铁熊 2010 59 1877Google Scholar

    Liu H T, Chang J Z, An K, Su T X 2010 Acta Phys. Sin. 59 1877Google Scholar

    [14]

    Yang B, Chen S, Cao C, Liu Z, Zheng C 2016 Int. J. Heat Mass Transfer 93 477Google Scholar

    [15]

    Ström H, Sasic S 2015 Procedia Eng. 102 1563Google Scholar

    [16]

    Feng Z G, Michaelides E E 2004 J. Comput. Phys. 195 602Google Scholar

    [17]

    Liu J, Huang C, Chai Z, Shi B 2022 Comput. Fluids 233 105240Google Scholar

    [18]

    史冬岩, 王志凯, 张阿漫 2014 63 074703Google Scholar

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 074703Google Scholar

    [19]

    孙东科, 项楠, 陈科, 倪中华 2013 62 024703Google Scholar

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 024703Google Scholar

    [20]

    He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282Google Scholar

    [21]

    Zhang X, Wang D, Li Q, Huang R 2024 arXiv: 2410.23802 [physics. comp-ph]

    [22]

    Qian Y H, d’Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [23]

    Chai Z, Shi B 2020 Phys. Rev. E 102 023306Google Scholar

    [24]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546Google Scholar

    [25]

    Huang R, Wu H 2016 J. Comput. Phys. 315 65Google Scholar

    [26]

    Huang H, Yang X, Krafczyk M, Lu X Y 2012 J. Fluid Mech. 692 369Google Scholar

    [27]

    Suzuki K, Inamuro T 2011 Comput. Fluids 49 173Google Scholar

    [28]

    Glowinski R, Pan T W, Hesla T I, Joseph D D, Periaux J 2001 J. Comput. Phys. 169 363Google Scholar

  • 图 1  封闭通道中两颗粒沉降示意图

    Figure 1.  Schematic of the sedimentation of two particles in an enclosure.

    图 2  不同${R_{{c_{\text{v}}}}}$时, 两颗粒沉降过程在$t = 0.084{\text{ s}}$时刻的无量纲温度场、速度矢量和颗粒位置 (a) ${R_{{c_{\text{v}}}}} = 0.25$; (b) ${R_{{c_{\text{v}}}}} = 1$; (c) ${R_{{c_{\text{v}}}}} = 4$; (d) ${R_{{c_{\text{v}}}}} = 16$

    Figure 2.  Dimensionless temperature field, velocity vectors, and particle positions in the sedimentation process of two particles at time $t = 0.084{\text{ s}}$ for different ${R_{{c_{\text{v}}}}}$: (a) ${R_{{c_{\text{v}}}}} = 0.25$; (b) ${R_{{c_{\text{v}}}}} = 1$; (c) ${R_{{c_{\text{v}}}}} = 4$; (d) ${R_{{c_{\text{v}}}}} = 16$.

    图 3  不同${R_{{c_{\text{v}}}}}$时, 两颗粒沉降过程不同因素随时间的变化 (a) 质心水平速度${U_{{\text{c}}, x}}$; (b) 质心竖直速度${U_{{\text{c}}, y}}$; (c) 质心距离$S$; (d) 质心水平夹角$\theta $

    Figure 3.  Variations of different factors with time in the sedimentation process of two particles for different ${R_{{c_{\text{v}}}}}$: (a) The horizontal velocity of mass center ${U_{{\text{c}}, x}}$; (b) the vertical velocity of mass center ${U_{{\text{c}}, y}}$; (c) the distance between mass center $S$; (d) the horizontal angle of mass center $\theta $.

    图 4  不同$Gr$时, 两颗粒沉降过程不同因素随时间的变化 (a) 质心水平速度${U_{{\text{c}}, x}}$; (b) 质心竖直速度${U_{{\text{c}}, y}}$; (c) 质心距离$S$; (d) 质心水平夹角$\theta $

    Figure 4.  Variations of different factors with time in the sedimentation process of two particles for different $Gr$: (a) The horizontal velocity of mass center ${U_{{\text{c}}, x}}$; (b) the vertical velocity of mass center ${U_{{\text{c}}, y}}$; (c) the distance between mass center $S$; (d) the horizontal angle of mass center $\theta $.

    图 5  不同颗粒初始温度时, 两颗粒沉降过程不同因素随时间的变化 (a) 质心水平速度${U_{{\text{c}}, x}}$; (b) 质心竖直速度${U_{{\text{c}}, y}}$; (c) 质心距离$S$; (d) 质心水平夹角$\theta $

    Figure 5.  Variations of different factors with time in the sedimentation process of two particles for different particle’s initial temperatures: (a) The horizontal velocity of mass center ${U_{{\text{c}}, x}}$; (b) the vertical velocity of mass center ${U_{{\text{c}}, y}}$; (c) the distance between mass center $S$; (d) the horizontal angle of mass center $\theta $.

    表 1  不同${R_{{c_{\text{v}}}}}$时, 两颗粒沉降过程的接触时刻${t_{{\text{kiss}}}}$、翻滚时刻${t_{{\text{tumble}}}}$、分离时刻${t_{{\text{detach}}}}$、拖曳时长$\Delta {t_{{\text{draft}}}}$、接触时长$\Delta {t_{{\text{kiss}}}}$、翻滚时长$\Delta {t_{{\text{tumble}}}}$

    Table 1.  The kissing, tumbling, and detaching moments (${t_{{\text{kiss}}}}$, ${t_{{\text{tumble}}}}$, and ${t_{{\text{detach}}}}$) and the drafting, kissing, and tumbling durations ($\Delta {t_{{\text{draft}}}}$, $\Delta {t_{{\text{kiss}}}}$, and $\Delta {t_{{\text{tumble}}}}$) in the sedimentation process of two particles for different ${R_{{c_{\text{v}}}}}$.

    ${R_{{c_{\text{v}}}}}$${t_{{\text{kiss}}}}$/s${t_{{\text{tumble}}}}$/s${t_{{\text{detach}}}}$/s$\Delta {t_{{\text{draft}}}}$/s$\Delta {t_{{\text{kiss}}}}$/s$\Delta {t_{{\text{tumble}}}}$/s
    0.250.7070.9381.8900.7070.2310.952
    10.5610.8211.7610.5610.2600.940
    40.3870.6891.5100.3870.3030.821
    160.3140.6861.3140.3140.3720.628
    DownLoad: CSV

    表 2  不同$Gr$时, 两颗粒沉降过程的接触时刻${t_{{\text{kiss}}}}$、翻滚时刻${t_{{\text{tumble}}}}$、分离时刻${t_{{\text{detach}}}}$、拖曳时长$\Delta {t_{{\text{draft}}}}$、接触时长$\Delta {t_{{\text{kiss}}}}$、翻滚时长$\Delta {t_{{\text{tumble}}}}$

    Table 2.  The kissing, tumbling, and detaching moments (${t_{{\text{kiss}}}}$, ${t_{{\text{tumble}}}}$, and ${t_{{\text{detach}}}}$) and the drafting, kissing, and tumbling durations ($\Delta {t_{{\text{draft}}}}$, $\Delta {t_{{\text{kiss}}}}$, and $\Delta {t_{{\text{tumble}}}}$) in the sedimentation process of two particles for different $Gr$.

    $Gr$${t_{{\text{kiss}}}}$/s${t_{{\text{tumble}}}}$/s${t_{{\text{detach}}}}$/s$\Delta {t_{{\text{draft}}}}$/s$\Delta {t_{{\text{kiss}}}}$/s$\Delta {t_{{\text{tumble}}}}$/s
    1000.2750.4890.6890.2750.2140.200
    5000.2570.4680.6690.2570.2110.201
    10000.2390.4440.6470.2390.2050.203
    20000.2140.4130.6230.2140.1990.210
    DownLoad: CSV

    表 3  不同颗粒初始温度时, 两颗粒沉降过程的接触时刻${t_{{\text{kiss}}}}$、翻滚时刻${t_{{\text{tumble}}}}$、分离时刻${t_{{\text{detach}}}}$、拖曳时长$\Delta {t_{{\text{draft}}}}$、接触时长$\Delta {t_{{\text{kiss}}}}$、翻滚时长$\Delta {t_{{\text{tumble}}}}$

    Table 3.  The kissing, tumbling, and detaching moments (${t_{{\text{kiss}}}}$, ${t_{{\text{tumble}}}}$, and ${t_{{\text{detach}}}}$) and the drafting, kissing, and tumbling durations ($\Delta {t_{{\text{draft}}}}$, $\Delta {t_{{\text{kiss}}}}$, and $\Delta {t_{{\text{tumble}}}}$) in the sedimentation process of two particles for different particle’s initial temperatures.

    Case${t_{{\text{kiss}}}}$/s${t_{{\text{tumble}}}}$/s${t_{{\text{detach}}}}$/s$\Delta {t_{{\text{draft}}}}$/s$\Delta {t_{{\text{kiss}}}}$/s$\Delta {t_{{\text{tumble}}}}$/s
    C-C0.2390.4440.6470.2390.2050.203
    C-H0.2580.4690.6690.2580.2110.200
    H-C0.3070.5010.7010.3070.1940.200
    H-H0.3650.7030.9020.3650.3380.199
    DownLoad: CSV
    Baidu
  • [1]

    Yang G C, Jing L, Kwok C Y, Sobral Y D 2019 Comput. Geotech. 114 103100Google Scholar

    [2]

    王尤富 2005 特种油气藏 12 91Google Scholar

    Wang Y F 2005 Special Oil Gas Reservoirs 12 91Google Scholar

    [3]

    Li H Y, Xue H R, Zhang J Y, Zhang G J 2023 Processes 11 2573Google Scholar

    [4]

    Nie D M, Lin J Z 2010 Commun. Comput. Phys. 7 544Google Scholar

    [5]

    Uhlmann M 2005 J. Comput. Phys. 209 448Google Scholar

    [6]

    Fortes A F, Joseph D D, Lundgren T S 1987 J. Fluid Mech. 177 467Google Scholar

    [7]

    Wang Z, Fan J, Luo K 2008 Int. J. Multiphase Flow 34 283Google Scholar

    [8]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95Google Scholar

    [9]

    Wang L, Guo Z, Mi J 2014 Comput. Fluids 96 20Google Scholar

    [10]

    Gan H, Chang J, Feng J J, Hu H H 2003 J. Fluid Mech. 481 385Google Scholar

    [11]

    仝志辉 2010 59 1884Google Scholar

    Tong Z H 2010 Acta Phys. Sin. 59 1884Google Scholar

    [12]

    毛威, 郭照立, 王亮 2013 62 084703Google Scholar

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703Google Scholar

    [13]

    刘汉涛, 常建忠, 安康, 苏铁熊 2010 59 1877Google Scholar

    Liu H T, Chang J Z, An K, Su T X 2010 Acta Phys. Sin. 59 1877Google Scholar

    [14]

    Yang B, Chen S, Cao C, Liu Z, Zheng C 2016 Int. J. Heat Mass Transfer 93 477Google Scholar

    [15]

    Ström H, Sasic S 2015 Procedia Eng. 102 1563Google Scholar

    [16]

    Feng Z G, Michaelides E E 2004 J. Comput. Phys. 195 602Google Scholar

    [17]

    Liu J, Huang C, Chai Z, Shi B 2022 Comput. Fluids 233 105240Google Scholar

    [18]

    史冬岩, 王志凯, 张阿漫 2014 63 074703Google Scholar

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 074703Google Scholar

    [19]

    孙东科, 项楠, 陈科, 倪中华 2013 62 024703Google Scholar

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 024703Google Scholar

    [20]

    He X, Chen S, Doolen G D 1998 J. Comput. Phys. 146 282Google Scholar

    [21]

    Zhang X, Wang D, Li Q, Huang R 2024 arXiv: 2410.23802 [physics. comp-ph]

    [22]

    Qian Y H, d’Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [23]

    Chai Z, Shi B 2020 Phys. Rev. E 102 023306Google Scholar

    [24]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546Google Scholar

    [25]

    Huang R, Wu H 2016 J. Comput. Phys. 315 65Google Scholar

    [26]

    Huang H, Yang X, Krafczyk M, Lu X Y 2012 J. Fluid Mech. 692 369Google Scholar

    [27]

    Suzuki K, Inamuro T 2011 Comput. Fluids 49 173Google Scholar

    [28]

    Glowinski R, Pan T W, Hesla T I, Joseph D D, Periaux J 2001 J. Comput. Phys. 169 363Google Scholar

  • [1] WANG Xiao, SONG Shiqi, PING Zijian, SHENG Siyuan, SHANG Xianyi, CHEN Fanxiu. Contact force calculation and evolution analysis of granular systems based on micro-CT experiment. Acta Physica Sinica, 2025, 74(1): 014501. doi: 10.7498/aps.74.20241206
    [2] Yu Bo-Wen, He Xiao-Tian, Xu Jin-Liang. Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer. Acta Physica Sinica, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [3] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [4] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [5] Gao Xiao-Wei, Ding Jin-Xing, Liu Hua-Yu. Finite line method and its application in coupled heat transfer between fluid-solid domains. Acta Physica Sinica, 2022, 71(19): 190201. doi: 10.7498/aps.71.20220833
    [6] Wang Guo-Qiang, Zhang Shuo, Yang Jun-Yuan, Xu Xiao-Ke. Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission. Acta Physica Sinica, 2021, 70(1): 010201. doi: 10.7498/aps.70.20201371
    [7] Wang Cun-Hai, Zheng Shu, Zhang Xin-Xin. Discontinuous finite element solutions for coupled radiation-conduction heat transfer in irregular media. Acta Physica Sinica, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [8] Jiang Yi-Min, Liu Mario. A thermodynamic model of grain-grain contact force. Acta Physica Sinica, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [9] Chen Mu-Feng, Li Xiang, Niu Xiao-Dong, Li You, Adnan, Hiroshi Yamaguchi. Sedimentation of two non-magnetic particles in magnetic fluid. Acta Physica Sinica, 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [10] Liu Han-Tao, Jian Shan, Wang Yan-Hua, Wang Chan-Juan, Li Hai-Qiao. Mesoscale simulation of the sedimentation of melting elliptical particle. Acta Physica Sinica, 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [11] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [12] Mao Wei, Guo Zhao-Li, Wang Liang. Lattice Boltzmann simulation of the sedimentation of particles with thermal convection. Acta Physica Sinica, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [13] Tong Zhi-Hui, Liu Han-Tao, Chang Jian-Zhong, An Kang. Direct simulation of melting solid particles sedimentation in a Newtonian fluid. Acta Physica Sinica, 2012, 61(2): 024401. doi: 10.7498/aps.61.024401
    [14] Xu Shuang-Ying, Hu Lin-Hua, Li Wen-Xin, Dai Song-Yuan. Effect of interface contacts between TiO2 particles on electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [15] Wang Long, Li Jia-Chun, Zhou Ji-Fu. Numerical study of flocculation settling of cohesive sediment. Acta Physica Sinica, 2010, 59(5): 3315-3323. doi: 10.7498/aps.59.3315
    [16] Tong Zhi-Hui. Direct numerical simulation on the influence of solid-liquid density ratio on the particle sedimentation under thermal convection. Acta Physica Sinica, 2010, 59(3): 1884-1889. doi: 10.7498/aps.59.1884
    [17] Liu Han-Tao, Chang Jian-Zhong, An Kang, Su Tie-Xiong. Direct numerical simulation of the sedimentation of two particles with thermal convection. Acta Physica Sinica, 2010, 59(3): 1877-1883. doi: 10.7498/aps.59.1877
    [18] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [19] Zhou Qian, Dong Peng, Cheng Bing-Ying. Self-assembly under gravity sedimentation of large size silica particles. Acta Physica Sinica, 2004, 53(11): 3984-3989. doi: 10.7498/aps.53.3984
    [20] . Acta Physica Sinica, 2002, 51(2): 286-290. doi: 10.7498/aps.51.286
Metrics
  • Abstract views:  549
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2024
  • Accepted Date:  22 December 2024
  • Available Online:  25 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map