Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of beam splitter thickness on angle measurement accuracy of dual-arm Tolansky interferometric autocollimator

FANG Zhenyuan ZHANG Baowu CUI Jianjun ZHANG Bin CHEN Kai XU Zijie ZHU Ling SUN Yi LUO Xianhuan

Citation:

Effect of beam splitter thickness on angle measurement accuracy of dual-arm Tolansky interferometric autocollimator

FANG Zhenyuan, ZHANG Baowu, CUI Jianjun, ZHANG Bin, CHEN Kai, XU Zijie, ZHU Ling, SUN Yi, LUO Xianhuan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to solve the problem that the measurement arm length needs to be obtained in real time when calculating the measurement angle in the process of Tolansky interference small angle measurement, a dual-arm Tolansky interference autocollimation angle measurement scheme is proposed, which not only maintains the function of Tolansky interference, but also integrates the principle of optical leverage. In the simulation study, it is found that the splitter with thickness in the scheme will lead to the lateral offset of the optical axis of the emitted light, which will change the position of the virtual point light source, and finally change the position of the center of the interference circle on the detector. In this work, in order to reduce the influence of the thickness of the beam splitter on the angle measurement accuracy of the angle measurement scheme, the optical path structure of the angle measurement scheme is redrawn, and the relationship between the center offset of the interference ring and the deflection angle, which contains the thickness factor and can accurately describe the optical path, is deduced. Therefore, the corresponding method is adopted as follows. Firstly, the measurement optical path of the splitter with a thickness factor is redrawn, the splitter is partially enlarged, and the original beam is replaced with the center line of the laser beam to draw the optical path. Then, the position of the virtual point light source under the influence of the thickness of the splitter is analyzed by using the single refraction spherical formula and the transition formula of geometric optics, and the relationship between the offset of the interference center and the deflection angle with the thickness of the splitter is established. Secondly, the coordinate information of the center of the interference ring under different thickness parameters of the splitter is obtained by using the virtual simulation experiment, which proves the correctness of the theoretical analysis. Then, simulation experiments such as simulation measurement of multiple sets of setting angles and angle measurement under different splitter thickness conditions are carried out, and the accuracy of the relationship including the splitter thickness factor deduced above is cross-validated. Finally, combined with the actual experiment, measurements are taken on the guide rail and calibrated autocollimator, and the influence of beam splitter thickness on angle measurement accuracy is investigated in detail. The research results are obtained below. Experiments show that the thickness of the splitter will affect the position of the initial center of the circle; with the increase of the thickness of the splitter, the error between the simulation measurement results and the relationship including the thickness factor is within ± 0.5 % at different angles, and the experimental data and theoretical results are in good agreement. At the same angle, as the thickness of the beam splitter increases, the difference between the established relationship and the approximate relationship gradually increases. With 1-mm-thick beam splitter, the relative error between the established relationship and the calculated value of the approximate relationship is only 0.22 % based on the data of the guide rail measured by the calibrated autocollimator. From these results, a conclusion can be drawn below. The utilizing a thinner spectroscope can effectively reduce the calculation and measurement errors, providing an important guidance for carrying out the in-depth research and development of this new autocollimator.
  • 图 1  Tolansky干涉自准直仪模型

    Figure 1.  Tolansky interference autocollimator model.

    图 2  同心圆环干涉图像

    Figure 2.  Concentric ring interference image.

    图 3  干涉自准直仪原理图

    Figure 3.  Schematic diagram of interference autocollimator.

    图 4  Tolansky干涉自准直仪仿真模型

    Figure 4.  Simulation model of Tolansky interferometric autocollimator.

    图 5  实验一仿真数据与理论数据

    Figure 5.  The simulation data and theoretical data of Experiment 1.

    图 6  X轴偏转仿真数据与理论数据误差

    Figure 6.  Simulation data of X-axis deflection and theoretical data error.

    图 7  Y轴偏转仿真数据与理论数据误差

    Figure 7.  Simulation data of Y-axis deflection and theoretical data error.

    图 8  圆心偏移量随分光镜厚度变化趋势图

    Figure 8.  The change trend of center offset with the thickness of the beam splitter.

    图 9  双臂Tolensky干涉实体仪器

    Figure 9.  Dual-arm Tolensky interference entity instrument.

    图 10  (22)式与(24)式测量值计算结果比较

    Figure 10.  Comparison of calculated results of measured values between Eq. (22) and Eq. (24).

    表 1  Zemax软件参数设置

    Table 1.  Zemax software parameter settings.

    Object classParameter
    LaserMonochromatic light, wavelength 632 nm, beam diameter 5 mm
    Converging lensThe diameter of the converging lens is 12 mm, the thickness is 1 mm
    SpectroscopeThe size is 20 mm × 20 mm, the thickness can be adjusted, tilt 45
    degrees around the x axis
    Reference mirrorDiameter 10 mm, thickness not included, tilt negative 90°
    around the x axis
    Measuring mirrorThe diameter is 10 mm, the thickness is not counted, no tilt
    CCDthe size of the receiving surface is 12.8 mm × 12.8 mm, tilt 45
    degrees around the x axis
    Reference arm length $ {D}_{1} $The initial length is 70 mm, the length can be changed.
    Measuring arm length $ {D}_{2} $The initial length is 130 mm, and the maximum length can be extended.
    LInitial length 140 mm, transformable length
    Air refractive index$ {n}_{0}=1.00029 $
    Glass refractive index$ n=1.5168 $
    DownLoad: CSV

    表 2  实验一参数

    Table 2.  Parameters of Experiment 1.

    实验对象分光镜厚度/mm会聚透镜
    CL2位置
    理论数值/mm
    $ {C}_{0}{C}_{0} $0固定0
    $ {C}_{0}{C}_{2} $5固定4.822735
    $ {C}_{0}{C}_{1} $5下移1.671882
    DownLoad: CSV

    表 3  实验二参数设置

    Table 3.  Parameter setting of Experiment two.

    Object classParameter
    SpectroscopeThe size is 20 mm × 20 mm, the thickness 5 mm .
    CCD camera spacing$ L=140 $mm.
    Reference arm length $ {D}_{1} $$ {D}_{1}=70 $mm.
    Measuring convergent lens$ f=70 $mm
    DownLoad: CSV
    Baidu
  • [1]

    She C, Xu L, Shan X D, Zhu H, Zhou Y, Wang Q L 2021 Appl. Opt. 60 8016Google Scholar

    [2]

    Shimizu Y, Matsukuma H, Wei G 2019 Sensors 19 5289Google Scholar

    [3]

    Zhao Y K, Fan X W, Wang C C, Lu L 2020 Opt. Lasers Eng. 126 105866Google Scholar

    [4]

    Geckeler R D, Krause M, Just A, Kranz O, Bosse H 2015 Measurement 73 231Google Scholar

    [5]

    Zhang M S 2021 J. Phys. Conf. Ser. 1952

    [6]

    付鹏, 张艳春, 赵涛, 赵勇明, 唐松, 李颖, 韩沈丹 2023 中国激光 51 0701017

    Fu P, Zhang Y C, Zhao T, Zhao Y M, Tang S, Li Y, Han S D 2023 Chin. J. Lasers 51 0701017

    [7]

    Wang S X, Kong L B, Wang C J, Cheung C F 2023 Opt. Express 31 2234Google Scholar

    [8]

    Wu C G, Shen X Y 2023 Journal of China Jiliang University 34 (in Chinese)[吴晨光, 沈小燕 2023中国计量大学学报 34 ]

    [9]

    Wu C G, Shen X Y, Zhou S N 2023 China Measurem. Test 1 (in Chinese)[吴晨光, 沈小燕, 周世男 2023中国测试 1 ]

    [10]

    陈秋霞 2006 红外 8 33Google Scholar

    Chen Q X 2006 Infrared 8 33Google Scholar

    [11]

    陈颖, 张学典, 逯兴莲, 张振一, 潘丽娜 2011 光机电信息 28 6

    Chen Y, Zhang X D, Lu X L, Zhang Z Y, Pan L N 2011 OME Inf. 28 6

    [12]

    Xu W, Xu W H, Bouet N, Zhou J, Yan H F, Huang X J, Huang L, Lu M, Maxim Z, Chu Y S, Nazaretski E 2023 Opt. Lasers Eng. 161

    [13]

    Chen L, Zhou S Y, Li H S , Yang Y T, Wu G H 2024 Opt. Lett 49 526

    [14]

    Guo C Y, Zhou Z J, Wu R, Su Z Y 2024 Opt. Fiber Technol. 86 103841Google Scholar

    [15]

    Larichev R A, Filatov Y V 2013 J. Opt. Technol. 80 554Google Scholar

    [16]

    Korolev A N, Gartsuev A I, Polishchuk G S, Tregub V P 2009 J. Opt. Technol. 76 624Google Scholar

    [17]

    M. Z. S, Shu T L 2005 KEM 295-296 337Google Scholar

    [18]

    张宝武, 崔建军, 欧阳烨锋, 陈恺, 方振远 2023 计量学报 44 1202Google Scholar

    Zhang B W, Cui J J, Ouyang Y F, Chen K, Fang Z Y 2023 Acta Metrolog. Sin. 44 1202Google Scholar

    [19]

    欧阳烨锋, 许子杰, 张宝武, 朱玲, 方振远, 罗贤欢, 孙怡 2024 光学学报 44 245

    Ouyang Y F, Xu Z J, Zhang B W, Zhu L, Fang Z Y, Luo X H, Sun Y 2024 Acta Opt. Sin. 44 245

    [20]

    许子杰, 张宝武, 施江焕, 欧阳烨锋, 朱玲, 方振远 2024 光学技术 50 459

    Xu Z J, Zhang B W, Shi J H, Ouyang Y F, Zhu L, Fang Z Y 2024 Opt. Techn. 50 459

    [21]

    张宝武, 许子杰, 施江焕, 朱玲, 方振远, 孙怡, 罗贤欢 2024 中国计量大学学报 35 1Google Scholar

    Zhang B W, Xu Z J, Shi J H, Zhu L, Fang Z Y, Sun Y, Luo X H 2024 J. China Jiliang Univ. 35 1Google Scholar

    [22]

    欧阳烨锋, 张宝武, 李玉彬, 朱玲, 方振远, 薛财文 2024 中国计量大学学报 34 541

    Ouyang Y F, Li Y B, Zhu L, Fang Z Y, Xue C W 2024 J. China Jiliang Univ. 34 541

    [23]

    欧阳烨锋, 崔建军, 张宝武, 陈恺, 杨宁, 方振远 2024 激光技术 48 135Google Scholar

    Ouyang Y F, Cui J J, Zhang B W, Chen K, Yang N, Fang Z Y 2024 Laser Techn. 48 135Google Scholar

  • [1] Sun Chen, Feng Yu-Tao, Fu Di, Zhang Ya-Fei, Li Juan, Liu Xue-Bin. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer. Acta Physica Sinica, doi: 10.7498/aps.69.20191179
    [2] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, doi: 10.7498/aps.68.20190051
    [3] Li Rong-Feng, Gao Shu-Chao, Xiao Chao-Fan, Xu Zhi-Yi, Xue Xing-Tai, Liu Jian-Bo, Zhao Yan-Ying, Chen Jia-Er, Lu Hai-Yang, Yan Xue-Qing. Generation of ultrafast broadband small angle hundreds MeV electron bunches from laser wakefield acceleration. Acta Physica Sinica, doi: 10.7498/aps.66.154101
    [4] Liu Wei-Bo, Dong Li-Fang. Formation mechanism of concentric-ring pattern in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.64.245202
    [5] Han Kui, Wang Zi-Yu, Shen Xiao-Peng, Wu Qiong-Hua, Tong Xing, Tang Gang, Wu Yu-Xi. Mach-Zehnder interferometer designed based on self-collimating beams and photonic band gap in photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.60.044212
    [6] Zhang Chun-Min, Zhu Lan-Yan. Influence of the polarization direction on the modulation depth and interferential intensity of a new polarizing atmospheric Michelson interferometer. Acta Physica Sinica, doi: 10.7498/aps.59.989
    [7] Yan Xin-Ge, Zhang Chun-Min, Zhao Bao-Chang. Research on the mode of obtaining interferograms based on the temporally and spatially mixed modulated polarization interference imaging spectrometer. Acta Physica Sinica, doi: 10.7498/aps.59.3123
    [8] Jian Xiao-Hua, Zhang Chun-Min, Zhang Lin, Zhao Bao-Chang, Zhu Lan-Yan. The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer. Acta Physica Sinica, doi: 10.7498/aps.58.2286
    [9] Yuan Zhi-Lin, Zhang Chun-Min, Zhao Bao-Chang. Study of SNR of a novel polarization interference imaging spectrometer. Acta Physica Sinica, doi: 10.7498/aps.56.6413
    [10] Du Zhi-Wei, Zhou Tie-Tao, Zhao Hui, Feng Lin-Ping, Dong Bao-Zhong, Chen Chang-Qi. Small angle x-ray scattering study of precipitation in Al-Zn-Mg-Cu alloys. Acta Physica Sinica, doi: 10.7498/aps.53.3601
    [11] Wu Guang, Zhou Chun-Yuan, Zeng He-Ping. Single-photon interference and router-control in an optic fiber Sagnac interferometer. Acta Physica Sinica, doi: 10.7498/aps.53.698
    [12] Chai Lu, He Tie-Ying, Yang Sheng-Jie, Wang Qing-Yue, Zhang Zhi-Gang. Optimization of the parameters for a SPIDER. Acta Physica Sinica, doi: 10.7498/aps.53.114
    [13] ZHANG GUO-YING, LIU GUI-LI, ZENG MEI-GUANG, QIAN CUN-FU. ENERGIES OF IMPURITIES AND DOPING EFFECT AT 5.3° LOW ANGLE GRAIN BOUNDARIES IN STEEL. Acta Physica Sinica, doi: 10.7498/aps.49.1344
    [14] XU XIN-YE, WANG YU-ZHU. THEORETICAL ANALYSES OF A DOPPLER TYPE ATOMIC INTERFEROMETER. Acta Physica Sinica, doi: 10.7498/aps.46.1062
    [15] WEI MING-JIAN. MEASUREMENT OF SMALL ANGLE X-RAY SCATTERING WITH DOUBLE CRYSTAL DIFFRACTOMETER. Acta Physica Sinica, doi: 10.7498/aps.39.225
    [16] LENGTH LABORATORY. A LASER INTERFEROMETER FOR SMALL ANGLE MEASUREMENT. Acta Physica Sinica, doi: 10.7498/aps.25.546
    [17] . Acta Physica Sinica, doi: 10.7498/aps.24.375
    [18] MOU KUO-KWANG, DCHANG JUAN-LING. ON THE INTERFEROMETRIC METHOD OF MEASURING THE SPECTRAL SLIT WIDTH OF THE MONOCHROMATOR. Acta Physica Sinica, doi: 10.7498/aps.20.457
    [19] T. F. HU, C. WEI, C. S. CHANG. GE IR INTERFEREMETER. Acta Physica Sinica, doi: 10.7498/aps.20.1164
    [20] . Acta Physica Sinica, doi: 10.7498/aps.16.245
Metrics
  • Abstract views:  199
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2024
  • Accepted Date:  04 January 2025
  • Available Online:  24 January 2025

/

返回文章
返回
Baidu
map