-
In this study, a T-shaped, four-period resonant slow-wave structure is optimally designed, and its high-frequency performance is comprehensively analyzed in theory. By using the image theory, the T-shaped waveguide unit is transformed into an equivalent ridge waveguide configuration. The high-frequency characteristics of the equivalent ridge waveguide, such as resonant frequency and structure of the T-shaped waveguide are analyzed by using equivalent circuit theory. The analysis has confirmed that in the ridge waveguide, starting from the second-highest order mode, the frequency points of the even-order modes are very consistent with those of the T-shaped waveguide; however, the odd-order modes have no such corresponding mode in the T-shaped waveguide, for they do not fulfill the electric boundary conditions required by the image method. On this basis, a T-shaped four-period resonant slow-wave structure is constructed, and its dispersion characteristics are analyzed to determine the resonant modes and frequencies, as well as the range of mode synchronization voltages. Simulations are subsequently performed to validate the effectiveness of the relativistic extended interaction radiation source, which includes the novel T-shaped periodic resonant slow-wave structure. Advanced three-dimensional particle simulations, in conjunction with optimization techniques show that a high-power microwave output at a frequency of 9.8 GHz, is achieved, which can delivers an average power of 71.4 MW. This output is attained under the conditions of a 448 kV beam voltage, 400 A beam current, and a 0.4 T uniform axial magnetic field, with an electron efficiency reaching 39.8%. This structure, characterized by the T-shaped waveguide, is demonstrated to be capable of producing high-efficiency, high-power microwaves with fewer periods, presenting a compact and efficient solution for generating high-power microwaves in advanced scientific applications.
-
Keywords:
- high-power microwave source /
- extended interaction /
- slow-wave structure /
- transit radiation oscillator
[1] Benford J, Swegle J A 2008 高功率微波 (第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社) 第 35—92 页
Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Chinese Version) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35–92
[2] 丁耀根 2020 真空电子技术 344 1Google Scholar
Ding Y G 2020 Vacuum Electronics 344 1Google Scholar
[3] Liu Z B, Huang H, Jin X, Li S F, Wang T F, Fang X H 2019 IEEE T. Electron. Dev. 66 722Google Scholar
[4] Yang F X, Dang F C, Ge X J, He J T, Ju J C, Zhang X P 2022 IEEE T. Electron. Dev. 69 7074Google Scholar
[5] Ju J C, Zhang J, Shu T, Zhong H H 2017 IEEE Electr. Device L. 38 270Google Scholar
[6] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 69 164102Google Scholar
Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar
[7] Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses) [黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402]Google Scholar
Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses)Google Scholar
[8] 王加松, 李洪涛, 李冬凤 2022 真空电子技术 5 24Google Scholar
Wang J S, Li H T, Li D F 2022 Vac. Electron. 5 24Google Scholar
[9] Li S F, Huang H, Duan Z Y, Basu B N, Liu Z B, He H, Wang Z L 2022 IEEE Electr. Device L. 43 131Google Scholar
[10] 宋玮, 刘国治, 林郁正, 邵浩 2008 强激光与粒子束 20 1322
Song W, Liu G Z, Lin Y Z, Shao H 2008 High Power Laser Particle Beams 20 1322
[11] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 64 108404Google Scholar
Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar
[12] 刘振帮, 雷禄容, 黄华, 金晓, 袁欢 2015 强激光与粒子束 27 142Google Scholar
Liu Z B, Lei L R, Huang H, Jin X, Yuan H 2015 High Power Laser Part. Beams 27 142Google Scholar
[13] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 59 1907Google Scholar
Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar
[14] 谢文球, 王自成, 罗积润, 刘青伦, 李现霞 2014 63 014101Google Scholar
Xie W Q, Wang Z C, Luo J R, Liu Q L, Li X X 2014 Acta Phys. Sin. 63 014101Google Scholar
[15] 邢俊毅, 冯进军 2010 真空电子技术 2010 33Google Scholar
Xian J Y, Fang J J 2010 Vac. Electron. 2010 33Google Scholar
[16] 王冬, 陈代兵, 秦奋, 范植开 2009 58 6962Google Scholar
Wang D, Chen D B, Qin F, Fan Z K 2009 Acta Phys. Sin. 58 6962Google Scholar
[17] 葛行军, 钟辉煌, 钱宝良, 张军 2010 59 2645Google Scholar
Ge X J, Zhong H H, Qian B L, Zhang J 2010 Acta Phys. Sin. 59 2645Google Scholar
[18] 刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 69 218401Google Scholar
Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar
[19] Zhang P, Shu T, Dang F C, Ge X j, Song L L, Yang F X, He J T 2022 IEEE T. Plasma Sci. 50 3557Google Scholar
[20] 陈树强, 胡力, 林为干 1992 电子科技大学学报 21 11
Chen S Q, Hu L, Lin W G 1992 J. UEST. China 21 11
[21] Zhang K C, Wu Z H, Liu S G 2009 J. Infrared Milli Terahz. Waves 30 309Google Scholar
[22] 邵玉 2017 硕士学位及论文 (合肥: 合肥工业大学)
Shao Y 2017 M. S. Thesis (Hefei: Hefei University of Technology
[23] 张开春 2009 硕士学位及论文 (成都: 电子科技大学)
Zhang K C 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China
-
图 2 T形波导和脊波导的电场分布 (a) T型波导基模; (b) 脊波导二阶模; (c) T形波导二阶模; (d) 脊波导四阶模
Figure 2. Electric field distributions of T-shaped waveguide and ridged waveguide: (a) Fundamental mode of T-shaped waveguide; (b) second order mode of ridged waveguide; (c) second order mode of T-shaped waveguide; (d) fourth order mode of T-shaped waveguide
图 4 理论频率和仿真理论以及误差 (a)谐振频率随${y_{\text{g}}}$的变化; (b) 谐振频率随${x_{\text{g}}}$的变化; (c)谐振频率随${z_{\text{g}}}$的变化
Figure 4. Theoretical frequency and simulated frequency and error: (a) The variation of frequency and error with ${y_{\text{g}}}$; (b) the variation of frequency and error with ${x_{\text{g}}}$; (c) the variation of frequency and error with ${z_{\text{g}}}$.
表 1 T形波导和脊波导基本模型对应的谐振频率
Table 1. Frequency of T-shaped waveguide and ridged waveguide.
表 2 几个典型高功率微波器件的性能参数
Table 2. Performance parameters of several typical HPM devices.
-
[1] Benford J, Swegle J A 2008 高功率微波 (第二版)(中译本) (江伟华, 张弛 译) (北京: 国防工业出版社) 第 35—92 页
Benford J, Swegle J A 2008 High Power Microwave (2nd Ed.) (Chinese Version) (translated by Jiang W H, Zhang C) (Beijing: National Defense Industry Press) pp35–92
[2] 丁耀根 2020 真空电子技术 344 1Google Scholar
Ding Y G 2020 Vacuum Electronics 344 1Google Scholar
[3] Liu Z B, Huang H, Jin X, Li S F, Wang T F, Fang X H 2019 IEEE T. Electron. Dev. 66 722Google Scholar
[4] Yang F X, Dang F C, Ge X J, He J T, Ju J C, Zhang X P 2022 IEEE T. Electron. Dev. 69 7074Google Scholar
[5] Ju J C, Zhang J, Shu T, Zhong H H 2017 IEEE Electr. Device L. 38 270Google Scholar
[6] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧 2020 69 164102Google Scholar
Yang D W, Chen C H, Shi Y C, Xiao R Z, Teng Y, Fan Z Q, Liu W Y, Song Z M, Sun J 2020 Acta Phys. Sin. 69 164102Google Scholar
[7] Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses) [黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402]Google Scholar
Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402 (in Chinses)Google Scholar
[8] 王加松, 李洪涛, 李冬凤 2022 真空电子技术 5 24Google Scholar
Wang J S, Li H T, Li D F 2022 Vac. Electron. 5 24Google Scholar
[9] Li S F, Huang H, Duan Z Y, Basu B N, Liu Z B, He H, Wang Z L 2022 IEEE Electr. Device L. 43 131Google Scholar
[10] 宋玮, 刘国治, 林郁正, 邵浩 2008 强激光与粒子束 20 1322
Song W, Liu G Z, Lin Y Z, Shao H 2008 High Power Laser Particle Beams 20 1322
[11] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 64 108404Google Scholar
Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar
[12] 刘振帮, 雷禄容, 黄华, 金晓, 袁欢 2015 强激光与粒子束 27 142Google Scholar
Liu Z B, Lei L R, Huang H, Jin X, Yuan H 2015 High Power Laser Part. Beams 27 142Google Scholar
[13] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 59 1907Google Scholar
Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar
[14] 谢文球, 王自成, 罗积润, 刘青伦, 李现霞 2014 63 014101Google Scholar
Xie W Q, Wang Z C, Luo J R, Liu Q L, Li X X 2014 Acta Phys. Sin. 63 014101Google Scholar
[15] 邢俊毅, 冯进军 2010 真空电子技术 2010 33Google Scholar
Xian J Y, Fang J J 2010 Vac. Electron. 2010 33Google Scholar
[16] 王冬, 陈代兵, 秦奋, 范植开 2009 58 6962Google Scholar
Wang D, Chen D B, Qin F, Fan Z K 2009 Acta Phys. Sin. 58 6962Google Scholar
[17] 葛行军, 钟辉煌, 钱宝良, 张军 2010 59 2645Google Scholar
Ge X J, Zhong H H, Qian B L, Zhang J 2010 Acta Phys. Sin. 59 2645Google Scholar
[18] 刘振帮, 黄华, 金晓, 王腾钫, 李士锋 2020 69 218401Google Scholar
Liu Z B, Huang H, Jin X, Wang T F, Li S F 2020 Acta Phys. Sin. 69 218401Google Scholar
[19] Zhang P, Shu T, Dang F C, Ge X j, Song L L, Yang F X, He J T 2022 IEEE T. Plasma Sci. 50 3557Google Scholar
[20] 陈树强, 胡力, 林为干 1992 电子科技大学学报 21 11
Chen S Q, Hu L, Lin W G 1992 J. UEST. China 21 11
[21] Zhang K C, Wu Z H, Liu S G 2009 J. Infrared Milli Terahz. Waves 30 309Google Scholar
[22] 邵玉 2017 硕士学位及论文 (合肥: 合肥工业大学)
Shao Y 2017 M. S. Thesis (Hefei: Hefei University of Technology
[23] 张开春 2009 硕士学位及论文 (成都: 电子科技大学)
Zhang K C 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China
Catalog
Metrics
- Abstract views: 1580
- PDF Downloads: 74
- Cited By: 0