Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthetic aperture optical image restoration based on multi-scale feature enhancement

Zhang Yin-Sheng Tong Jun-Yi Chen Ge Shan Meng-Jiao Wang Shuo-Yang Shan Hui-Lin

Citation:

Synthetic aperture optical image restoration based on multi-scale feature enhancement

Zhang Yin-Sheng, Tong Jun-Yi, Chen Ge, Shan Meng-Jiao, Wang Shuo-Yang, Shan Hui-Lin
PDF
HTML
Get Citation
  • With the wide applications of high-resolution imaging technology in topographic mapping, astronomical observation, and military reconnaissance and other fields, the requirements for imaging resolution of optical system are becoming higher and higher . According to the diffraction limit and Rayleigh criterion, the imaging resolution of the optical system is proportional to the size of the aperture of the system, but affected by the material and the processing of the optical component: the single aperture of the optical system cannot be infinitely enlarged. Therefore the synthetic aperture technology is proposed to replace the single large aperture optical system. Owing to the effect of sub-aperture arrangement and light scattering, the imaging of synthetic aperture optical system will be degraded because of insufficient light area and phase distortion. The traditional imaging restoration algorithm of synthetic aperture optical system is sensitive to noise, overly relies on degraded model, requires a lot of manually designed models, and has poor adaptability. To solve this problem, a multi-scale feature enhancement method of restoring the synthetic aperture optical image is proposed in this work. U-Net is used to obtain multi-scale feature, and self-attention in mixed domain is used to improve the ability of of the network to extract the features in space and channel. Multi-scale feature fusion module and feature enhancement module are constructed to fuse the information between features on different scales. The information interaction mode of the codec layer is optimized, the attention of the whole network to the real structure of the original image is enhanced, and the artifact interference caused by ringing is avoided in the process of restoration. The final experimental results are 1.51%, 4.42% and 5.22% higher than those from the advanced deep learning algorithms in the evaluation indexes of peak signal-to-noise ratio, structural similarity and perceived similarity, respectively. In addition, the method presented in this work has a good restoration effect on the degraded images to different degrees of synthetic aperture, and can effectively restore the degraded images and the images with abnormal light, so as to solve the problem of imaging degradation of synthetic aperture optical system. The feasibility of deep learning method in synthetic aperture optical image restoration is proved.
      Corresponding author: Shan Hui-Lin, shanhuilin@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071240, 62106111).
    [1]

    Li J J, Zhou N, Sun J S, Zhou S, Bai Z D, Lu L P, Chen Q, Zuo C 2022 Light Sci. Appl. 11 154Google Scholar

    [2]

    李道京, 高敬涵, 崔岸婧, 周凯, 吴疆 2022 中国激光 49 0310001Google Scholar

    Li D J, Gao J H, Cui H J, Zhou K, Wu J 2022 Chin. J. Lasers 49 0310001Google Scholar

    [3]

    Shinwook K, Youngchun Y 2023 Opt. Express 31 4942Google Scholar

    [4]

    刘政, 王胜千, 饶长辉 2012 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin 61 039501Google Scholar

    [5]

    Sun J, Cao W F, Xu Z B, Ponce J 2015 IEEE Conference on Computer Viion and Pattern Recognition Boston, MA, USA, June 7–12, 2015 p769

    [6]

    Tao X, Gao H Y, Shen X Y, Wang J, Jia J Y 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8174

    [7]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H, Shao L 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Nashville, TN, USA, June 20–25, 2021 p14816

    [8]

    Chong M, Wang Q, Zhang J 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p17378

    [9]

    Li, D S, Zhang Y, Cheung K, Wang X G, Qin H W, Li H S 2022 European Conference on Computer Vision ( ECCV) Tel Aviv, Israel October 23–27, 2022 p736

    [10]

    Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8183

    [11]

    Kupyn O, Martyniuk T, Wu J R, Wang Z Y 2019 IEEE/CVF International Conference on Computer Vision Seoul, Korea (South), Oct. 27–Nov. 2, 2019 p8877

    [12]

    江泽涛, 覃露露 2020 电子学报 48 258Google Scholar

    Jiang Z T, Qin L L 2020 J. Electron. 48 258Google Scholar

    [13]

    陈炳权, 朱熙, 汪政阳, 梁寅聪 2022 湖南大学学报(自然科学版) 49 124Google Scholar

    Chen B Q, Zhu X, Wang Z Y, Liang Y C 2022 J. Hunan Univ. (Nat. Sci. ) 49 124Google Scholar

    [14]

    王山豹, 梁栋, 沈玲 2023 计算机辅助设计与图形学学报 35 1109Google Scholar

    Wang S B, Liang D, Shen 2023 J. Comput. Aided Design Comput. Graphics 35 1109Google Scholar

    [15]

    刘杰, 祁箬, 韩轲 2023 光学精密工程 31 2080Google Scholar

    Liu J, Qi R, Han K 2023 Opt. Precis. Eng. 31 2080Google Scholar

    [16]

    Woo S H, Park J, Lee J Y, Kweon I S 2018 Proceedings of the European Conference on Computer Vision Munich, Germany, September 8–14, 2018 p3

    [17]

    王向军, 欧阳文森 2022 红外与激光工程 51 460Google Scholar

    Wang X J, Ouyang W S 2022 Infrared Laser Eng. 51 460Google Scholar

    [18]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p5718

    [19]

    Li Y W, Fan Y C, Xiang X Y, Demandolx D, Ranjan R, Timofte R, Gool L V 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vancouver, BC, Canada, June 17–24, 2023 p18278

    [20]

    Tsai F J, Peng Y T, Lin Y Y , Tsai C C, Lin C W 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p146

    [21]

    Chen L Y, Chu X J, Zhang X, Sun J 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p17

    [22]

    Tang J, Wang K Q, Ren Z R, Zhang W, Wu X Y, Di J L, Liu G D, Zhao J L 2020 Opt. Lasers Eng. 139 106463Google Scholar

    [23]

    Tang J, Wu J, Wang K Q, Ren Z B, Wu X Y, Hu L S, Di J L, Liu G D, Zhao J L 2021 Opt. Lasers Eng. 146 106707Google Scholar

  • 图 1  (a)合成孔径系统八孔径环形阵列结构示意图; (b)发生弥散后的光学系统PSF

    Figure 1.  (a) Structure diagram of eight-aperture ring array of synthetic aperture system; (b) optical system PSF after dispersion.

    图 2  MFE-GAN总体框架图

    Figure 2.  MFE-GAN General frame diagram.

    图 3  多尺度特征聚合模块

    Figure 3.  Multi-scale feature aggregation module.

    图 4  特征加强模块FEM

    Figure 4.  Feature enhancement module FEM.

    图 5  基于自注意力的混合域注意力MDBS

    Figure 5.  Attention in mixed soft and hard domains MDBS.

    图 6  判别器结构图

    Figure 6.  Discriminator structure diagram.

    图 7  (a)原始图像与(b)退化图像对比

    Figure 7.  Comparison between original image (a) and degraded image(b).

    图 8  对比试验可视化结果 (a)原始清晰图像; (b) 退化图像; (c) 维纳滤波算法; (d) Deblur GAN算法; (e) SRN算法; (f) MPR-Net算法; (g) Stripformer算法; (h)本文算法

    Figure 8.  Visualization results of comparison experiment: (a) Clear image; (b) degraded image; (c) Wiener filtering; (d) Deblur GAN; (e) SRN; (f) MPR-Net; (g) Stripformer; (h) our proposed method.

    图 9  不同振铃增益影响下的退化图像 (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10

    Figure 9.  Degraded images under the influence of different ringing gains: (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10.

    图 10  不同振铃增益影响下本文方法对图像的复原结果 (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10

    Figure 10.  Results of image restoration obtained by this method under the influence of different ringing gains: (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 10.

    图 11  振铃增益n = 10时, 本文方法与其他方法对图像的复原结果对比 (a)受损图像; (b) Deblur GAN 算法; (c) SRN算法; (d) MPR-Net 算法; (e) Stripformer算法; (f)本文方法

    Figure 11.  Comparison of image restoration results between the proposed method and other methods under the influence of ringing gain (n = 10): (a) Damaged image; (b) Deblur GAN; (c) SRN; (d) MPR-Net; (e) Stripformer; (f) our proposed method.

    图 12  对光线异常退化图像的修复结果 (a)光线异常图像; (b)退化后的光线异常图像; (c)本文复原后的生成图像

    Figure 12.  Repair results of abnormal light degradation images: (a) Abnormal light image; (b) degraded images of light anomalies; (c) generated image after restoration of ours.

    表 1  实验环境

    Table 1.  Experimental environment.

    Hardware and software Configuration
    Operating system
    programming language
    Windows10
    Programming framework Pytorch2.0.0+ python3.9.16
    CPU 12th Gen Intel(R)
    Core(TM) i9-12900 KF
    GPU Nvidia GeForce RTX3090
    Memory 32G
    Video memory 24G
    DownLoad: CSV

    表 2  不同算法定量实验结果

    Table 2.  Quantitative experiment results of different algorithms.

    对比算法 PSNR/dB SSIM LPIPS FID
    Wiener filtering 15.227 0.5452 0.0896 3.9776
    Deblur GAN 22.379 0.7011 0.0383 1.2534
    SRN 17.639 0.6588 0.0697 2.1246
    MPR-Net 24.725 0.7364 0.0515 0.5728
    Stripformer 26.013 0.7556 0.0384 0.7138
    Ours 26.408 0.7890 0.0363 0.8979
    DownLoad: CSV

    表 3  在 $ n=10 $振铃增益影响下不同算法的定量实验结果

    Table 3.  Quantitative experimental results of different algorithms under the influence of ringing gain ( $ n=10 $).

    对比算法 PSNR/dB SSIM LPIPS
    Deblur GAN 16.867 0.6278 0.1006
    SRN 19.369 0.7454 0.0545
    MPR-Net 20.166 0.7624 0.0437
    Stripformer 22.023 0.7472 0.0483
    Ours 22.162 0.7702 0.0426
    DownLoad: CSV

    表 4  消融实验数据对比

    Table 4.  Comparison of G1 ablation data of coarse repair network.

    消融策略 U-Net 多尺度特征聚合模块 特征增强模块 混合域注意力 多尺度判别器 PSNR/dB SSIM LPIPS FID
    策略1 19.306 0.5865 0.0841 1.2976
    策略2 21.904 0.6714 0.0833 1.0742
    策略3 23.872 0.6927 0.0579 0.9103
    策略4 25.425 0.7563 0.0515 0.9157
    策略5 23.261 0.7401 0.0604 0.9247
    策略6 22.558 0.7342 0.0739 0.9508
    策略7 23.074 0.7095 0.0637 0.9460
    策略8 20.839 0.6584 0.0799 0.9882
    策略9 22.944 0.6627 0.0682 0.9763
    本文策略 26.408 0.7890 0.0363 0.8979
    DownLoad: CSV
    Baidu
  • [1]

    Li J J, Zhou N, Sun J S, Zhou S, Bai Z D, Lu L P, Chen Q, Zuo C 2022 Light Sci. Appl. 11 154Google Scholar

    [2]

    李道京, 高敬涵, 崔岸婧, 周凯, 吴疆 2022 中国激光 49 0310001Google Scholar

    Li D J, Gao J H, Cui H J, Zhou K, Wu J 2022 Chin. J. Lasers 49 0310001Google Scholar

    [3]

    Shinwook K, Youngchun Y 2023 Opt. Express 31 4942Google Scholar

    [4]

    刘政, 王胜千, 饶长辉 2012 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin 61 039501Google Scholar

    [5]

    Sun J, Cao W F, Xu Z B, Ponce J 2015 IEEE Conference on Computer Viion and Pattern Recognition Boston, MA, USA, June 7–12, 2015 p769

    [6]

    Tao X, Gao H Y, Shen X Y, Wang J, Jia J Y 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8174

    [7]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H, Shao L 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Nashville, TN, USA, June 20–25, 2021 p14816

    [8]

    Chong M, Wang Q, Zhang J 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p17378

    [9]

    Li, D S, Zhang Y, Cheung K, Wang X G, Qin H W, Li H S 2022 European Conference on Computer Vision ( ECCV) Tel Aviv, Israel October 23–27, 2022 p736

    [10]

    Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake City, UT, USA, June 18–23, 2018 p8183

    [11]

    Kupyn O, Martyniuk T, Wu J R, Wang Z Y 2019 IEEE/CVF International Conference on Computer Vision Seoul, Korea (South), Oct. 27–Nov. 2, 2019 p8877

    [12]

    江泽涛, 覃露露 2020 电子学报 48 258Google Scholar

    Jiang Z T, Qin L L 2020 J. Electron. 48 258Google Scholar

    [13]

    陈炳权, 朱熙, 汪政阳, 梁寅聪 2022 湖南大学学报(自然科学版) 49 124Google Scholar

    Chen B Q, Zhu X, Wang Z Y, Liang Y C 2022 J. Hunan Univ. (Nat. Sci. ) 49 124Google Scholar

    [14]

    王山豹, 梁栋, 沈玲 2023 计算机辅助设计与图形学学报 35 1109Google Scholar

    Wang S B, Liang D, Shen 2023 J. Comput. Aided Design Comput. Graphics 35 1109Google Scholar

    [15]

    刘杰, 祁箬, 韩轲 2023 光学精密工程 31 2080Google Scholar

    Liu J, Qi R, Han K 2023 Opt. Precis. Eng. 31 2080Google Scholar

    [16]

    Woo S H, Park J, Lee J Y, Kweon I S 2018 Proceedings of the European Conference on Computer Vision Munich, Germany, September 8–14, 2018 p3

    [17]

    王向军, 欧阳文森 2022 红外与激光工程 51 460Google Scholar

    Wang X J, Ouyang W S 2022 Infrared Laser Eng. 51 460Google Scholar

    [18]

    Zamir S W, Arora A, Khan S, Hayat M, Khan F S, Yang M H 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition New Orleans, LA, USA, June 18–24, 2022 p5718

    [19]

    Li Y W, Fan Y C, Xiang X Y, Demandolx D, Ranjan R, Timofte R, Gool L V 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Vancouver, BC, Canada, June 17–24, 2023 p18278

    [20]

    Tsai F J, Peng Y T, Lin Y Y , Tsai C C, Lin C W 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p146

    [21]

    Chen L Y, Chu X J, Zhang X, Sun J 2022 European Conference on Computer Vision (ECCV) Tel Aviv, Israel, October 23–27, 2022 p17

    [22]

    Tang J, Wang K Q, Ren Z R, Zhang W, Wu X Y, Di J L, Liu G D, Zhao J L 2020 Opt. Lasers Eng. 139 106463Google Scholar

    [23]

    Tang J, Wu J, Wang K Q, Ren Z B, Wu X Y, Hu L S, Di J L, Liu G D, Zhao J L 2021 Opt. Lasers Eng. 146 106707Google Scholar

  • [1] Wang Fu-Jie, Cao Xiao-Yu, Gao Chao, Wen Xue-Ke, Lei Bing. Algorithms for calculating polarization direction based on spatial modulation of vector optical field. Acta Physica Sinica, 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [2] Bai Li-Chun, Sun Jin-Guang, Gao Yan-Dong. High-speed photography and image analysis of orbital motion of gas bubbles in ultrasonic field. Acta Physica Sinica, 2021, 70(5): 054701. doi: 10.7498/aps.70.20201381
    [3] Lan Bin, Feng Guo-Ying, Zhang Tao, Liang Jing-Chuan, Zhou Shou-Huan. A single-element interferometer for measuring parallelism and uniformity of transparent plate. Acta Physica Sinica, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [4] Zheng Dian-Chun, Ding Ning, Shen Xiang-Dong, Zhao Da-Wei, Zheng Qiu-Ping, Wei Hong-Qing. Study on discharge phenomena of short-air-gap in needle-plate electrode based on fractal theory. Acta Physica Sinica, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [5] Guo Yu-Qi, Pan Jun-Xing, Zhang Jin-Jun, Sun Min-Na, Wang Bao-Feng, Wu Hai-Shun. Multi-scale ordered patterns in photosensitive ternary polymer mixtures. Acta Physica Sinica, 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [6] Shao Yu-Fei, Yang Xin, Li Jiu-Hui, Zhao Xing. Atomistic simulation study on the local strain fields around an extended edge dislocation in copper. Acta Physica Sinica, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [7] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [8] Hou Feng-Zhen, Huang Xiao-Lin, Zhuang Jian-Jun, Huo Cheng-Yu, Ning Xin-Bao. Multi-scale strategy and data surrogating test: two elements for the detection of time irreversibility in heart rate variability. Acta Physica Sinica, 2012, 61(22): 220507. doi: 10.7498/aps.61.220507
    [9] Jiang Zhu-Hui, Huang Si-Xun, Shi Han-Qing, Zhang Wei, Wang Biao. A new research on sea surface wind direction retrieval of synthetic aperture radar image. Acta Physica Sinica, 2011, 60(10): 108402. doi: 10.7498/aps.60.108402
    [10] Lu Huai-Bao, Li Jun-Wan, Ni Yu-Shan, Mei Ji-Fa, Wang Hong-Sheng. Multiscale analysis of defect initiation on the atomistic crack tip in body-centered-cubic metal Ta. Acta Physica Sinica, 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [11] Sun Zeng-Guo, Han Chong-Zhao. Modeling high-resolution synthetic aperture radar images with heavy-tailed distributions. Acta Physica Sinica, 2010, 59(2): 998-1008. doi: 10.7498/aps.59.998
    [12] Sun Qi-Cheng, Zhang Guo-Hua, Wang Bo, Wang Guang-Qian. Shear modulus of semi-flexible networks in two dimensions. Acta Physica Sinica, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [13] Xing Zhen-Ci, Xu Wei, Rong Hai-Wu, Wang Bao-Yan. Response to bounded noise excitation of stochastic Mathieu-Duffing system with time delay state feedback. Acta Physica Sinica, 2009, 58(2): 824-829. doi: 10.7498/aps.58.824
    [14] Li Qin, Cai Li, Feng Chao-Wen. Cellular neural network with hybrid single-electron and MOS transistors architecture and its application. Acta Physica Sinica, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [15] Gong Zhi-Qiang, Zhou Lei, Zhi Rong, Feng Guo-Lin. Analysis of dynamical statistical characteristics of temperature correlation networks of 1—30d scales. Acta Physica Sinica, 2008, 57(8): 5351-5360. doi: 10.7498/aps.57.5351
    [16] Yang Xiao-Dong, Ning Xin-Bao, He Ai-Jun, Du Si_Dan. Mass exponent spectrum analysis of human ECG signals based on multiple scale factors. Acta Physica Sinica, 2008, 57(3): 1514-1521. doi: 10.7498/aps.57.1514
    [17] Sun Zeng-Guo, Han Chong-Zhao. Maximum a posteriori filtering for synthetic aperture radar images based on heavy-tailed Rayleigh distribution of speckle. Acta Physica Sinica, 2007, 56(8): 4565-4570. doi: 10.7498/aps.56.4565
    [18] Lei You-Ming, Xu Wei. Homoclinic chaos in averaged oscillator subjected to combined deterministic and narrow-band random excitations. Acta Physica Sinica, 2007, 56(9): 5103-5110. doi: 10.7498/aps.56.5103
    [19] MA JIAN-WEI, YANG HUI-ZHU, ZHU YA-PING. SIMULATION OF ACOUSTIC WAVE PROPAGATION IN COMPLEX MEDIA USING MRFD METHOD. Acta Physica Sinica, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
    [20] YANG SHI-XIN, LI FANG-HUA, LIU YU-DONG, GU YUAN-XIN, FAN HAI-FU. APPLICATION OF DIRECT METHOD TO ELECTRON CRYSTALLOGRAPHIC IMAGE PROCESSING FOR T WO-DIMENSIONAL PROTEIN CRYSTALS. Acta Physica Sinica, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
Metrics
  • Abstract views:  2155
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2023
  • Accepted Date:  17 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回
Baidu
map