Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil

Feng Kai-Yuan Shao Fu-Qiu Jiang Xiang-Rui Zou De-Bin Hu Li-Xiang Zhang Guo-Bo Yang Xiao-Hu Yin Yan Ma Yan-Yun Yu Tong-Pu

Citation:

Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil

Feng Kai-Yuan, Shao Fu-Qiu, Jiang Xiang-Rui, Zou De-Bin, Hu Li-Xiang, Zhang Guo-Bo, Yang Xiao-Hu, Yin Yan, Ma Yan-Yun, Yu Tong-Pu
PDF
HTML
Get Citation
  • Neutron production via D(d, n)3He nuclear reaction during the interaction of two counter-propagating circularly polarized laser pulses with ultra-thin deuterium target is investigated by particle-in-cell simulation and Monte Carlo method. It is found that the rotation direction and initial relative phase difference of laser electric field vector have important effects on deuterium foil compression and neutron characteristics. The reason is attributed to the net light pressure and the difference in transverse instability development. The highest neutron yield can be obtained by choosing two laser pulses with a relative phase difference of 0 and the same rotation direction of the electric field vector. When the relative phase difference is 0.5π or 1.5π and the rotation direction of electric field vector is different, the neutrons have a directional spatial distribution and the neutron yield only slightly decreases. For left-handed circularly polarized laser pulse and right-handed circularly polarized laser pulse, each with an intensity of 1.23 × 1021 W/cm2, a pulse width of 33 fs and a relative phase difference of 0.5π, it is possible to produce a pulsed neutron source with a yield of 8.5 × 104 n, production rate of 1.2 × 1019 n/s, pulse width of 23 fs and good forward direction as well as tunable spatial distribution. Comparing with photonuclear neutron source and beam target neutron source driven by ultraintense laser pulses, the duration of neutron source in our scheme decreases significantly, thereby possessing many potential applications such as neutron nuclear data measurement. Our scheme offers a possible method to obtain a compact neutron source with short pulse width, high production rate and good forward direction.
      Corresponding author: Zou De-Bin, debinzou@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175310, 12275356, U22411281), the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ20042), the Youth Innovation Award of NUDT (Grant No. 20190102), and the Postgraduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20210006).
    [1]

    鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [2]

    夏江帆, 张杰 2000 物理 29 270Google Scholar

    Xia J F, Zhang J 2000 Physics 29 270Google Scholar

    [3]

    Alvarez J, Fernández-Tobias J, Mima K, Nakai S, Kar S, Kato Y, Perlado J M 2014 Physics Procedia 60 29Google Scholar

    [4]

    Chen S N, Negoita F, Spohr K, d’Humières E, Pomerantz I, Fuchs J 2019 Matter Radiat. Extremes 4 054402Google Scholar

    [5]

    Günther M M, Rosmej O N, Tavana P, Gyrdymov M, Skobliakov A, Kantsyrev A, Zähter S, Borisenko N G, Pukhov A, Andreev N E 2022 Nat. Commun. 13 170Google Scholar

    [6]

    Zimmer M, Scheuren S, Kleinschmidt A, Mitura N, Tebartz A, Schaumann G, Abel T, Ebert T, Hesse M, Zähter Ş, Vogel S C, Merle O, Ahlers R J, Duarte Pinto S, Peschke M, Kröll T, Bagnoud V, Rödel C, Roth M 2022 Nat. Commun. 13 1173Google Scholar

    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [8]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [9]

    Ren G, Yan J, Liu J, Lan K, Chen Y H, Huo W Y, Fan Z, Zhang X, Zheng J, Chen Z, Jiang W, Chen L, Tang Q, Yuan Z, Wang F, Jiang S, Ding Y, Zhang W, He X T 2017 Phys. Rev. Lett. 118 165001Google Scholar

    [10]

    Curtis A, Calvi C, Tinsley J, Hollinger R, Kaymak V, Pukhov A, Wang S, Rockwood A, Wang Y, Shlyaptsev V N, Rocca J J 2018 Nat. Commun. 9 1077Google Scholar

    [11]

    Labaune C, Baccou C, Depierreux S, Goyon C, Loisel G, Yahia V, Rafelski J 2013 Nat. Commun. 4 2506Google Scholar

    [12]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489Google Scholar

    [13]

    Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Lu X M, Jiang Y H, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2009 Phys. Rev. A 80 051201Google Scholar

    [14]

    Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M, Favalli A, Fernandez J, Gautier D, Geissel M, Haight R, Hamilton C E, Hegelich B M, Johnson R P, Merrill F, Schaumann G, Schoenberg K, Schollmeier M, Shimada T, Taddeucci T, Tybo J L, Wagner F, Wender S A, Wilde C H, Wurden G A 2013 Phys. Rev. Lett. 110 044802Google Scholar

    [15]

    Mirfayzi S R, Alejo A, Ahmed H, Raspino D, Ansell S, Wilson L A, Armstrong C, Butler N M H, Clarke R J, Higginson A, Kelleher J, Murphy C D, Notley M, Rusby D R, Schooneveld E, Borghesi M, McKenna P, Rhodes N J, Neely D, Brenner C M, Kar S 2017 Appl. Phys. Lett. 111 044101Google Scholar

    [16]

    Jiang X R, Shao F Q, Zou D B, Yu M Y, Hu L X, Guo X Y, Huang T W, Zhang H, Wu S Z, Zhang G B, Yu T P, Yin Y, Zhuo H B, Zhou C T 2020 Nucl. Fusion 60 076019Google Scholar

    [17]

    崔波, 张智猛, 戴曾海, 齐伟, 邓志刚, 黄华, 贺书凯, 王为武, 滕建, 张博, 刘红杰, 陈家斌, 肖云青, 吴笛, 马文君, 洪伟, 粟敬钦, 周维民, 谷渝秋 2021 强激光与粒子束 33 123Google Scholar

    Cui B, Zhang Z M, Dai Z H, Qi W, Deng Z G, Huang H, He S K, Wang W W, Teng J, Zhang B, Liu H J, Chen J B, Xiao Y Q, Wu D , Ma W J, Hong W, Su J Q, Zhou W M, Gu Y Q 2021 High Power Laser Part. Beams 33 123Google Scholar

    [18]

    Shkolnikov P L, Kaplan A E, Pukhov A, Meyer-ter-Vehn J 1997 Appl. Phys. Lett. 71 3471

    [19]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [20]

    Arikawa Y, Utsugi M, Alessio M, Nagai T, Abe Y, Kojima S, Sakata S, Inoue H, Fujioka S, Zhang Z, Chen H, Park J, Williams J, Morita T, Sakawa Y, Nakata Y, Kawanaka J, Jitsuno T, Sarukura N, Miyanaga N, Nakai M, Shiraga H, Nishimura H, Azechi H 2015 Plasma Fusion Res 10 2404003Google Scholar

    [21]

    Jiao X J, Shaw J M, Wang T, Wang X M, Tsai H, Poth P, Pomerantz I, Labun L A, Toncian T, Downer M C, Hegelich B M 2017 Matter Radiat. Extremes 2 296Google Scholar

    [22]

    Feng J, Fu C, Li Y, Zhang X, Wang J, Li D, Zhu C, Tan J, Mirzaie M, Zhang Z, Chen L 2020 High Energy Density Phys. 36 100753Google Scholar

    [23]

    Jiang X R, Zou D B, Zhao Z J, Hu L X, Han P, Yu J Q, Yu T P, Yin Y, Shao F Q 2021 Phys. Rev. Appl. 15 034032Google Scholar

    [24]

    Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103

    [25]

    Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [26]

    Shen B F, Meyer-ter-Vehn J 2001 Phys. Plasmas 8 1003Google Scholar

    [27]

    Zhang X M, Shen B F 2006 J. Plasma Phys. 72 635Google Scholar

    [28]

    Macchi A 2006 Appl. Phys. B 82 337Google Scholar

    [29]

    Hu L X, Yu T P, Shao F Q, Zhu Q J, Yin Y, Ma Y Y 2015 Phys. Plasmas 22 123104Google Scholar

    [30]

    Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002Google Scholar

    [31]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar

    [32]

    Wan Y, Pai C H, Zhang C J, Li F, Wu Y P, Hua J F, Lu W, Gu Y Q, Silva L O, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 234801Google Scholar

    [33]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar

    [34]

    Wu D, Sheng Z M, Yu W, Fritzsche S, He X T 2021 AIP Advances 11 075003Google Scholar

    [35]

    Deng H X, Sha R, Hu L X, Jiang X R, Zhao N, Zou D B, Yu T P, Shao F Q 2022 Plasma Phys. Controlled Fusion 64 085004Google Scholar

    [36]

    Toupin C, Lefebvre E, Bonnaud G 2001 Phys. Plasmas 8 1011Google Scholar

    [37]

    Liskien H, Paulsen A 1973 At. Data Nucl. Data Tables 11 569Google Scholar

    [38]

    Macchi A, Cattani F, Liseykina T V, Cornolti F 2005 Phys. Rev. Lett. 94 165003Google Scholar

    [39]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar

    [40]

    Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M, Cary J R 2008 Phys. Rev. Lett. 101 164802Google Scholar

    [41]

    Qiao B, Kar S, Geissler M, Gibbon P, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 108 115002

    [42]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [43]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X H, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006Google Scholar

    [44]

    Palmer C A J, Schreiber J, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Spindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002Google Scholar

    [45]

    Zhang X M, Shen B F, Ji L L, Wang W P, Xu J C, Yu Y H, Wang X F 2011 Phys. Plasmas 18 073101Google Scholar

    [46]

    Sgattoni A, Sinigardi S, Macchi A 2014 Appl. Phys. Lett. 15 084105Google Scholar

    [47]

    Sgattoni A, Sinigardi S, Fedeli L, Pegoraro F, Macchi A 2015 Phys. Rev. E 91 013106Google Scholar

  • 图 1  双束对射圆极化激光与超薄氘靶相互作用示意图, 其中红色曲线包络代表右旋光, 蓝色曲线包括代表左旋光, $ k $代表坡印亭矢量 (a)—(d) 代表一束右旋光与一束左旋光的情况(RCP+LCP); (e)—(h) 代表两束右旋光的情况(RCP+RCP), 从左至右初始相对相位差$ \Delta \phi $依次为$ 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi $

    Figure 1.  Schematic diagram of two counter-propagating circularly polarized laser pulses interacting with ultrathin deuterium target: (a)–(d) The cases of a left-rotating light and a right-rotating light (RCP+LCP); (e)–(h) the cases of two right-rotating light (RCP+RCP). From left to right, the initial relative phase difference $ \Delta \phi $ is $ 0, {\text{ }}0.5{\text{π }}, {\text{ }}\pi , {\text{ }}1.5\pi $, respectively. Here, red and blue curves represent the right- and left-rotating light and $ k $is Poynting vector.

    图 2  $ t = 32{T_0} $时, 不同电场矢量$ {\boldsymbol{E}}_{\text{r}} $旋转方向和不同初始相对相位差$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $情况下, 电子((a)—(d)和(i)—(l))和D+离子((e)—(h)和(m)—(p))的密度空间分布, 其中(a)—(h)和(i)—(p)分别代表RCP+LCP和RCP+RCP的情况

    Figure 2.  Spatial distributions of both electrons ((a)–(d) and (i)–(l)) and ions ((e)–(h) and (m)–(p)) for different rotation direction of electric fields $ {\boldsymbol{E}}_{\text{r}} $ and initial relative phase $ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ at $ t = 32{T_0} $. Here, (a)—(h) and (i)—(p) represent the cases of RCP+LCP and RCP+RCP, respectively.

    图 3  不同电场矢量$ {{{\boldsymbol E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $情况下, $ t = 50{T_0} $时电子((a), (b))和D+离子((c), (d))的能谱分布 (a), (c) RCP+LCP; (b), (d) RCP+RCP

    Figure 3.  Spectral distributions of (a), (b) electrons and (c), (d) ions for the cases of different rotation direction of the electric fields $ {{{\boldsymbol E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ at $ t = 50{T_0} $: (a), (c) RCP+LCP; (b), (d) RCP+RCP.

    图 4  不同电场矢量$ {{{\boldsymbol E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, $ t = 32{T_0} $时刻的中子产生率$ {P_{\text{n}}} $ ((a)—(h))和$ t = 50{T_0} $时的总中子产额$ {N_{\text{n}}} $分布((i)—(p))

    Figure 4.  Spatial distributions of (a)–(h) neutron production rate $ {P_{\text{n}}} $ at $ t = 32{T_0} $ and (i)–(p) total neutron yield $ {N_{\text{n}}} $ at $ t = 50{T_0} $ in the cases of different rotation direction of electric fields $ {{{\boldsymbol E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $.

    图 5  不同电场矢量$ {{{\boldsymbol E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, 中子产生率$ {P_{\text{n}}} $ ((a), (b))和总中子产额$ {N_{\text{n}}} $ ((c), (d))随时间的演化

    Figure 5.  Temporal evolutions of (a), (b) neutron production rate $ {P_{\text{n}}} $ and (c), (d) total neutron yield $ {N_{\text{n}}} $ in the cases of different rotation direction of electric fields $ {{{\boldsymbol E}}_{\text{r}}} $of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $.

    图 6  不同电场矢量$ {{\boldsymbol{E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, $ t = 50{T_0} $时的中子能谱 (a) RCP+LCP; (b) RCP+RCP

    Figure 6.  Spectra of the emitted neutrons at $ t = 50{T_0} $ in the cases of different rotation direction of the electric fields $ {{\boldsymbol{E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $: (a) RCP+LCP; (b) RCP+RCP.

    图 7  不同电场矢量$ {{{E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, $ t = 25{T_0} $ (a), (b)和$ t = 50{T_0} $ (c)和(d)时刻的中子角分布

    Figure 7.  Angular distributions of the accumulated neutrons at $ t = 25{T_0} $ (a), (b) and $ t = 50{T_0} $ (c), (d) in the cases of different rotation direction of electric fields $ {{{E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $.

    Baidu
  • [1]

    鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [2]

    夏江帆, 张杰 2000 物理 29 270Google Scholar

    Xia J F, Zhang J 2000 Physics 29 270Google Scholar

    [3]

    Alvarez J, Fernández-Tobias J, Mima K, Nakai S, Kar S, Kato Y, Perlado J M 2014 Physics Procedia 60 29Google Scholar

    [4]

    Chen S N, Negoita F, Spohr K, d’Humières E, Pomerantz I, Fuchs J 2019 Matter Radiat. Extremes 4 054402Google Scholar

    [5]

    Günther M M, Rosmej O N, Tavana P, Gyrdymov M, Skobliakov A, Kantsyrev A, Zähter S, Borisenko N G, Pukhov A, Andreev N E 2022 Nat. Commun. 13 170Google Scholar

    [6]

    Zimmer M, Scheuren S, Kleinschmidt A, Mitura N, Tebartz A, Schaumann G, Abel T, Ebert T, Hesse M, Zähter Ş, Vogel S C, Merle O, Ahlers R J, Duarte Pinto S, Peschke M, Kröll T, Bagnoud V, Rödel C, Roth M 2022 Nat. Commun. 13 1173Google Scholar

    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [8]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [9]

    Ren G, Yan J, Liu J, Lan K, Chen Y H, Huo W Y, Fan Z, Zhang X, Zheng J, Chen Z, Jiang W, Chen L, Tang Q, Yuan Z, Wang F, Jiang S, Ding Y, Zhang W, He X T 2017 Phys. Rev. Lett. 118 165001Google Scholar

    [10]

    Curtis A, Calvi C, Tinsley J, Hollinger R, Kaymak V, Pukhov A, Wang S, Rockwood A, Wang Y, Shlyaptsev V N, Rocca J J 2018 Nat. Commun. 9 1077Google Scholar

    [11]

    Labaune C, Baccou C, Depierreux S, Goyon C, Loisel G, Yahia V, Rafelski J 2013 Nat. Commun. 4 2506Google Scholar

    [12]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489Google Scholar

    [13]

    Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Lu X M, Jiang Y H, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2009 Phys. Rev. A 80 051201Google Scholar

    [14]

    Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M, Favalli A, Fernandez J, Gautier D, Geissel M, Haight R, Hamilton C E, Hegelich B M, Johnson R P, Merrill F, Schaumann G, Schoenberg K, Schollmeier M, Shimada T, Taddeucci T, Tybo J L, Wagner F, Wender S A, Wilde C H, Wurden G A 2013 Phys. Rev. Lett. 110 044802Google Scholar

    [15]

    Mirfayzi S R, Alejo A, Ahmed H, Raspino D, Ansell S, Wilson L A, Armstrong C, Butler N M H, Clarke R J, Higginson A, Kelleher J, Murphy C D, Notley M, Rusby D R, Schooneveld E, Borghesi M, McKenna P, Rhodes N J, Neely D, Brenner C M, Kar S 2017 Appl. Phys. Lett. 111 044101Google Scholar

    [16]

    Jiang X R, Shao F Q, Zou D B, Yu M Y, Hu L X, Guo X Y, Huang T W, Zhang H, Wu S Z, Zhang G B, Yu T P, Yin Y, Zhuo H B, Zhou C T 2020 Nucl. Fusion 60 076019Google Scholar

    [17]

    崔波, 张智猛, 戴曾海, 齐伟, 邓志刚, 黄华, 贺书凯, 王为武, 滕建, 张博, 刘红杰, 陈家斌, 肖云青, 吴笛, 马文君, 洪伟, 粟敬钦, 周维民, 谷渝秋 2021 强激光与粒子束 33 123Google Scholar

    Cui B, Zhang Z M, Dai Z H, Qi W, Deng Z G, Huang H, He S K, Wang W W, Teng J, Zhang B, Liu H J, Chen J B, Xiao Y Q, Wu D , Ma W J, Hong W, Su J Q, Zhou W M, Gu Y Q 2021 High Power Laser Part. Beams 33 123Google Scholar

    [18]

    Shkolnikov P L, Kaplan A E, Pukhov A, Meyer-ter-Vehn J 1997 Appl. Phys. Lett. 71 3471

    [19]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [20]

    Arikawa Y, Utsugi M, Alessio M, Nagai T, Abe Y, Kojima S, Sakata S, Inoue H, Fujioka S, Zhang Z, Chen H, Park J, Williams J, Morita T, Sakawa Y, Nakata Y, Kawanaka J, Jitsuno T, Sarukura N, Miyanaga N, Nakai M, Shiraga H, Nishimura H, Azechi H 2015 Plasma Fusion Res 10 2404003Google Scholar

    [21]

    Jiao X J, Shaw J M, Wang T, Wang X M, Tsai H, Poth P, Pomerantz I, Labun L A, Toncian T, Downer M C, Hegelich B M 2017 Matter Radiat. Extremes 2 296Google Scholar

    [22]

    Feng J, Fu C, Li Y, Zhang X, Wang J, Li D, Zhu C, Tan J, Mirzaie M, Zhang Z, Chen L 2020 High Energy Density Phys. 36 100753Google Scholar

    [23]

    Jiang X R, Zou D B, Zhao Z J, Hu L X, Han P, Yu J Q, Yu T P, Yin Y, Shao F Q 2021 Phys. Rev. Appl. 15 034032Google Scholar

    [24]

    Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103

    [25]

    Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [26]

    Shen B F, Meyer-ter-Vehn J 2001 Phys. Plasmas 8 1003Google Scholar

    [27]

    Zhang X M, Shen B F 2006 J. Plasma Phys. 72 635Google Scholar

    [28]

    Macchi A 2006 Appl. Phys. B 82 337Google Scholar

    [29]

    Hu L X, Yu T P, Shao F Q, Zhu Q J, Yin Y, Ma Y Y 2015 Phys. Plasmas 22 123104Google Scholar

    [30]

    Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002Google Scholar

    [31]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar

    [32]

    Wan Y, Pai C H, Zhang C J, Li F, Wu Y P, Hua J F, Lu W, Gu Y Q, Silva L O, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 234801Google Scholar

    [33]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar

    [34]

    Wu D, Sheng Z M, Yu W, Fritzsche S, He X T 2021 AIP Advances 11 075003Google Scholar

    [35]

    Deng H X, Sha R, Hu L X, Jiang X R, Zhao N, Zou D B, Yu T P, Shao F Q 2022 Plasma Phys. Controlled Fusion 64 085004Google Scholar

    [36]

    Toupin C, Lefebvre E, Bonnaud G 2001 Phys. Plasmas 8 1011Google Scholar

    [37]

    Liskien H, Paulsen A 1973 At. Data Nucl. Data Tables 11 569Google Scholar

    [38]

    Macchi A, Cattani F, Liseykina T V, Cornolti F 2005 Phys. Rev. Lett. 94 165003Google Scholar

    [39]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar

    [40]

    Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M, Cary J R 2008 Phys. Rev. Lett. 101 164802Google Scholar

    [41]

    Qiao B, Kar S, Geissler M, Gibbon P, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 108 115002

    [42]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [43]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X H, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006Google Scholar

    [44]

    Palmer C A J, Schreiber J, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Spindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002Google Scholar

    [45]

    Zhang X M, Shen B F, Ji L L, Wang W P, Xu J C, Yu Y H, Wang X F 2011 Phys. Plasmas 18 073101Google Scholar

    [46]

    Sgattoni A, Sinigardi S, Macchi A 2014 Appl. Phys. Lett. 15 084105Google Scholar

    [47]

    Sgattoni A, Sinigardi S, Fedeli L, Pegoraro F, Macchi A 2015 Phys. Rev. E 91 013106Google Scholar

  • [1] Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source. Acta Physica Sinica, 2024, 73(7): 072801. doi: 10.7498/aps.73.20231957
    [2] Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu. Muon spectrometers on China Spallation Neutron Source and its application prospects. Acta Physica Sinica, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [3] Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou. Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Physica Sinica, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [4] Jiang Wei, Jiang Hao-Yu, Yi Han, Fan Rui-Rui, Cui Zeng-Qi, Sun Kang, Zhang Guo-Hui, Tang Jing-Yu, Sun Zhi-Jia, Ning Chang-Jun, Gao Ke-Qing, An Qi, Bai Huai-Yong, Bao Jie, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yong-Hao, Chen Yu-Kai, Chen Zhen, Feng Chang-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Luan Guang-Yuan, Mu Qi-Li, Qi Bin-Bin, Ren Jie, Ren Zhi-Zhou, Ruan Xi-Chao, Song Zhao-Hui, Song Ying-Peng, Sun Hong, Sun Xiao-Yang, Tan Zhi-Xin, Tang Hong-Qing, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wang Zhao-Hui, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Lin-Hao, Zhang Qi-Wei, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, The CSNS Back-n Collaboration  . Detector calibration based on secondary protons of Back-n white neutron source. Acta Physica Sinica, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [5] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [6] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [7] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [8] Hu Zhi-Liang, Yang Wei-Tao, Li Yong-Hong, Li Yang, He Chao-Hui, Wang Song-Lin, Zhou Bin, Yu Quan-Zhi, He Huan, Xie Fei, Bai Yu-Rong, Liang Tian-Jiao. Atmospheric neutron single event effect in 65 nm microcontroller units by using CSNS-BL09. Acta Physica Sinica, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [9] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Erratum: Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [10] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [11] Dai Zheng-Liang, Cui Wei-Jia, Wang Da-Ming, Zhang Yan-Kui. Decoupled two-dimensional direction of arrival estimation of single distributed source by vectoring differential phases. Acta Physica Sinica, 2018, 67(7): 070702. doi: 10.7498/aps.67.20172154
    [12] Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Shen Yang, Yu Ji-Bao, Fan Ya, Zhang An-Xue. A circular polarization antenna designed based on the polarization conversion metasurface. Acta Physica Sinica, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [13] Shen Fei, Liang Tai-Ran, Yin Wen, Yu Quan-Zhi, Zuo Tai-Sen, Yao Ze-En, Zhu Tao, Liang Tian-Jiao. Shielding design of the multi-purpose reflectometer of China spallation neutron source. Acta Physica Sinica, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [14] Huang Xiang-Dong, Meng Tian-Wei, Ding Dao-Xian, Wang Zhao-Hua. A novel phase difference frequency estimator based on forward and backward sub-segmenting. Acta Physica Sinica, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [15] Wang Sheng, Zou Yu-Bin, Wen Wei-Wei, Li Hang, Liu Shu-Quan, Wang Hu, Lu Yuan-Rong, Tang Guo-You, Guo Zhi-Yu. Study of coded source neutron imaging based on a compact accelerator. Acta Physica Sinica, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [16] Luo Qun, Huang Lin-Hai, Gu Nai-Ting, Li Fei, Rao Chang-Hui. Experimental study on phase diversity wavefront sensing technology in piston error detection. Acta Physica Sinica, 2012, 61(6): 069501. doi: 10.7498/aps.61.069501
    [17] Li Fei, Rao Chang-Hui. High resolution imaging technique based on phase diversity hybrid method. Acta Physica Sinica, 2012, 61(2): 029502. doi: 10.7498/aps.61.029502
    [18] Li Fei. Phase diversity image restoration. Acta Physica Sinica, 2012, 61(23): 230203. doi: 10.7498/aps.61.230203
    [19] Yu Quan-Zhi, Yin Wen, Liang Tian-Jiao. Calculation and analysis of DPA in the main components of CSNS target station. Acta Physica Sinica, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [20] Ding Hai-Bing, Pang Wen-Ning, Liu Yi-Bao, Shang Ren-Cheng. Polarization direction modulation for spin-polarized electrons with liquid crystal variable retarder. Acta Physica Sinica, 2005, 54(9): 4097-4100. doi: 10.7498/aps.54.4097
Metrics
  • Abstract views:  3569
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2023
  • Accepted Date:  09 June 2023
  • Available Online:  29 June 2023
  • Published Online:  20 September 2023

/

返回文章
返回
Baidu
map