-
Neutron production via D(d, n)3He nuclear reaction during the interaction of two counter-propagating circularly polarized laser pulses with ultra-thin deuterium target is investigated by particle-in-cell simulation and Monte Carlo method. It is found that the rotation direction and initial relative phase difference of laser electric field vector have important effects on deuterium foil compression and neutron characteristics. The reason is attributed to the net light pressure and the difference in transverse instability development. The highest neutron yield can be obtained by choosing two laser pulses with a relative phase difference of 0 and the same rotation direction of the electric field vector. When the relative phase difference is 0.5π or 1.5π and the rotation direction of electric field vector is different, the neutrons have a directional spatial distribution and the neutron yield only slightly decreases. For left-handed circularly polarized laser pulse and right-handed circularly polarized laser pulse, each with an intensity of 1.23 × 1021 W/cm2, a pulse width of 33 fs and a relative phase difference of 0.5π, it is possible to produce a pulsed neutron source with a yield of 8.5 × 104 n, production rate of 1.2 × 1019 n/s, pulse width of 23 fs and good forward direction as well as tunable spatial distribution. Comparing with photonuclear neutron source and beam target neutron source driven by ultraintense laser pulses, the duration of neutron source in our scheme decreases significantly, thereby possessing many potential applications such as neutron nuclear data measurement. Our scheme offers a possible method to obtain a compact neutron source with short pulse width, high production rate and good forward direction.
-
Keywords:
- two counter-propagating laser pulses /
- relative phase difference /
- rotation direction of electric-field vector /
- pulsed neutron source
[1] 鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[2] 夏江帆, 张杰 2000 物理 29 270Google Scholar
Xia J F, Zhang J 2000 Physics 29 270Google Scholar
[3] Alvarez J, Fernández-Tobias J, Mima K, Nakai S, Kar S, Kato Y, Perlado J M 2014 Physics Procedia 60 29Google Scholar
[4] Chen S N, Negoita F, Spohr K, d’Humières E, Pomerantz I, Fuchs J 2019 Matter Radiat. Extremes 4 054402Google Scholar
[5] Günther M M, Rosmej O N, Tavana P, Gyrdymov M, Skobliakov A, Kantsyrev A, Zähter S, Borisenko N G, Pukhov A, Andreev N E 2022 Nat. Commun. 13 170Google Scholar
[6] Zimmer M, Scheuren S, Kleinschmidt A, Mitura N, Tebartz A, Schaumann G, Abel T, Ebert T, Hesse M, Zähter Ş, Vogel S C, Merle O, Ahlers R J, Duarte Pinto S, Peschke M, Kröll T, Bagnoud V, Rödel C, Roth M 2022 Nat. Commun. 13 1173Google Scholar
[7] Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar
[8] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar
[9] Ren G, Yan J, Liu J, Lan K, Chen Y H, Huo W Y, Fan Z, Zhang X, Zheng J, Chen Z, Jiang W, Chen L, Tang Q, Yuan Z, Wang F, Jiang S, Ding Y, Zhang W, He X T 2017 Phys. Rev. Lett. 118 165001Google Scholar
[10] Curtis A, Calvi C, Tinsley J, Hollinger R, Kaymak V, Pukhov A, Wang S, Rockwood A, Wang Y, Shlyaptsev V N, Rocca J J 2018 Nat. Commun. 9 1077Google Scholar
[11] Labaune C, Baccou C, Depierreux S, Goyon C, Loisel G, Yahia V, Rafelski J 2013 Nat. Commun. 4 2506Google Scholar
[12] Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489Google Scholar
[13] Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Lu X M, Jiang Y H, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2009 Phys. Rev. A 80 051201Google Scholar
[14] Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M, Favalli A, Fernandez J, Gautier D, Geissel M, Haight R, Hamilton C E, Hegelich B M, Johnson R P, Merrill F, Schaumann G, Schoenberg K, Schollmeier M, Shimada T, Taddeucci T, Tybo J L, Wagner F, Wender S A, Wilde C H, Wurden G A 2013 Phys. Rev. Lett. 110 044802Google Scholar
[15] Mirfayzi S R, Alejo A, Ahmed H, Raspino D, Ansell S, Wilson L A, Armstrong C, Butler N M H, Clarke R J, Higginson A, Kelleher J, Murphy C D, Notley M, Rusby D R, Schooneveld E, Borghesi M, McKenna P, Rhodes N J, Neely D, Brenner C M, Kar S 2017 Appl. Phys. Lett. 111 044101Google Scholar
[16] Jiang X R, Shao F Q, Zou D B, Yu M Y, Hu L X, Guo X Y, Huang T W, Zhang H, Wu S Z, Zhang G B, Yu T P, Yin Y, Zhuo H B, Zhou C T 2020 Nucl. Fusion 60 076019Google Scholar
[17] 崔波, 张智猛, 戴曾海, 齐伟, 邓志刚, 黄华, 贺书凯, 王为武, 滕建, 张博, 刘红杰, 陈家斌, 肖云青, 吴笛, 马文君, 洪伟, 粟敬钦, 周维民, 谷渝秋 2021 强激光与粒子束 33 123Google Scholar
Cui B, Zhang Z M, Dai Z H, Qi W, Deng Z G, Huang H, He S K, Wang W W, Teng J, Zhang B, Liu H J, Chen J B, Xiao Y Q, Wu D , Ma W J, Hong W, Su J Q, Zhou W M, Gu Y Q 2021 High Power Laser Part. Beams 33 123Google Scholar
[18] Shkolnikov P L, Kaplan A E, Pukhov A, Meyer-ter-Vehn J 1997 Appl. Phys. Lett. 71 3471
[19] Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar
[20] Arikawa Y, Utsugi M, Alessio M, Nagai T, Abe Y, Kojima S, Sakata S, Inoue H, Fujioka S, Zhang Z, Chen H, Park J, Williams J, Morita T, Sakawa Y, Nakata Y, Kawanaka J, Jitsuno T, Sarukura N, Miyanaga N, Nakai M, Shiraga H, Nishimura H, Azechi H 2015 Plasma Fusion Res 10 2404003Google Scholar
[21] Jiao X J, Shaw J M, Wang T, Wang X M, Tsai H, Poth P, Pomerantz I, Labun L A, Toncian T, Downer M C, Hegelich B M 2017 Matter Radiat. Extremes 2 296Google Scholar
[22] Feng J, Fu C, Li Y, Zhang X, Wang J, Li D, Zhu C, Tan J, Mirzaie M, Zhang Z, Chen L 2020 High Energy Density Phys. 36 100753Google Scholar
[23] Jiang X R, Zou D B, Zhao Z J, Hu L X, Han P, Yu J Q, Yu T P, Yin Y, Shao F Q 2021 Phys. Rev. Appl. 15 034032Google Scholar
[24] Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103
[25] Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar
[26] Shen B F, Meyer-ter-Vehn J 2001 Phys. Plasmas 8 1003Google Scholar
[27] Zhang X M, Shen B F 2006 J. Plasma Phys. 72 635Google Scholar
[28] Macchi A 2006 Appl. Phys. B 82 337Google Scholar
[29] Hu L X, Yu T P, Shao F Q, Zhu Q J, Yin Y, Ma Y Y 2015 Phys. Plasmas 22 123104Google Scholar
[30] Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002Google Scholar
[31] Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar
[32] Wan Y, Pai C H, Zhang C J, Li F, Wu Y P, Hua J F, Lu W, Gu Y Q, Silva L O, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 234801Google Scholar
[33] Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar
[34] Wu D, Sheng Z M, Yu W, Fritzsche S, He X T 2021 AIP Advances 11 075003Google Scholar
[35] Deng H X, Sha R, Hu L X, Jiang X R, Zhao N, Zou D B, Yu T P, Shao F Q 2022 Plasma Phys. Controlled Fusion 64 085004Google Scholar
[36] Toupin C, Lefebvre E, Bonnaud G 2001 Phys. Plasmas 8 1011Google Scholar
[37] Liskien H, Paulsen A 1973 At. Data Nucl. Data Tables 11 569Google Scholar
[38] Macchi A, Cattani F, Liseykina T V, Cornolti F 2005 Phys. Rev. Lett. 94 165003Google Scholar
[39] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar
[40] Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M, Cary J R 2008 Phys. Rev. Lett. 101 164802Google Scholar
[41] Qiao B, Kar S, Geissler M, Gibbon P, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 108 115002
[42] Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar
[43] Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X H, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006Google Scholar
[44] Palmer C A J, Schreiber J, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Spindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002Google Scholar
[45] Zhang X M, Shen B F, Ji L L, Wang W P, Xu J C, Yu Y H, Wang X F 2011 Phys. Plasmas 18 073101Google Scholar
[46] Sgattoni A, Sinigardi S, Macchi A 2014 Appl. Phys. Lett. 15 084105Google Scholar
[47] Sgattoni A, Sinigardi S, Fedeli L, Pegoraro F, Macchi A 2015 Phys. Rev. E 91 013106Google Scholar
-
图 1 双束对射圆极化激光与超薄氘靶相互作用示意图, 其中红色曲线包络代表右旋光, 蓝色曲线包括代表左旋光,
$ k $ 代表坡印亭矢量 (a)—(d) 代表一束右旋光与一束左旋光的情况(RCP+LCP); (e)—(h) 代表两束右旋光的情况(RCP+RCP), 从左至右初始相对相位差$ \Delta \phi $ 依次为$ 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi $ Figure 1. Schematic diagram of two counter-propagating circularly polarized laser pulses interacting with ultrathin deuterium target: (a)–(d) The cases of a left-rotating light and a right-rotating light (RCP+LCP); (e)–(h) the cases of two right-rotating light (RCP+RCP). From left to right, the initial relative phase difference
$ \Delta \phi $ is$ 0, {\text{ }}0.5{\text{π }}, {\text{ }}\pi , {\text{ }}1.5\pi $ , respectively. Here, red and blue curves represent the right- and left-rotating light and$ k $ is Poynting vector.图 2
$ t = 32{T_0} $ 时, 不同电场矢量$ {\boldsymbol{E}}_{\text{r}} $ 旋转方向和不同初始相对相位差$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ 情况下, 电子((a)—(d)和(i)—(l))和D+离子((e)—(h)和(m)—(p))的密度空间分布, 其中(a)—(h)和(i)—(p)分别代表RCP+LCP和RCP+RCP的情况Figure 2. Spatial distributions of both electrons ((a)–(d) and (i)–(l)) and ions ((e)–(h) and (m)–(p)) for different rotation direction of electric fields
$ {\boldsymbol{E}}_{\text{r}} $ and initial relative phase$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ at$ t = 32{T_0} $ . Here, (a)—(h) and (i)—(p) represent the cases of RCP+LCP and RCP+RCP, respectively.图 3 不同电场矢量
$ {{{\boldsymbol E}}_{\text{r}}} $ 旋转方向和不同初始相对相位差$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ 情况下,$ t = 50{T_0} $ 时电子((a), (b))和D+离子((c), (d))的能谱分布 (a), (c) RCP+LCP; (b), (d) RCP+RCPFigure 3. Spectral distributions of (a), (b) electrons and (c), (d) ions for the cases of different rotation direction of the electric fields
$ {{{\boldsymbol E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ at$ t = 50{T_0} $ : (a), (c) RCP+LCP; (b), (d) RCP+RCP.图 4 不同电场矢量
$ {{{\boldsymbol E}}_{\text{r}}} $ 旋转方向和不同初始相对相位差$ \Delta \phi $ 情况下,$ t = 32{T_0} $ 时刻的中子产生率$ {P_{\text{n}}} $ ((a)—(h))和$ t = 50{T_0} $ 时的总中子产额$ {N_{\text{n}}} $ 分布((i)—(p))Figure 4. Spatial distributions of (a)–(h) neutron production rate
$ {P_{\text{n}}} $ at$ t = 32{T_0} $ and (i)–(p) total neutron yield$ {N_{\text{n}}} $ at$ t = 50{T_0} $ in the cases of different rotation direction of electric fields$ {{{\boldsymbol E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase$ \Delta \phi $ .图 5 不同电场矢量
$ {{{\boldsymbol E}}_{\text{r}}} $ 旋转方向和不同初始相对相位差$ \Delta \phi $ 情况下, 中子产生率$ {P_{\text{n}}} $ ((a), (b))和总中子产额$ {N_{\text{n}}} $ ((c), (d))随时间的演化Figure 5. Temporal evolutions of (a), (b) neutron production rate
$ {P_{\text{n}}} $ and (c), (d) total neutron yield$ {N_{\text{n}}} $ in the cases of different rotation direction of electric fields$ {{{\boldsymbol E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase$ \Delta \phi $ .图 6 不同电场矢量
$ {{\boldsymbol{E}}_{\text{r}}} $ 旋转方向和不同初始相对相位差$ \Delta \phi $ 情况下,$ t = 50{T_0} $ 时的中子能谱 (a) RCP+LCP; (b) RCP+RCPFigure 6. Spectra of the emitted neutrons at
$ t = 50{T_0} $ in the cases of different rotation direction of the electric fields$ {{\boldsymbol{E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase$ \Delta \phi $ : (a) RCP+LCP; (b) RCP+RCP.图 7 不同电场矢量
$ {{{E}}_{\text{r}}} $ 旋转方向和不同初始相对相位差$ \Delta \phi $ 情况下,$ t = 25{T_0} $ (a), (b)和$ t = 50{T_0} $ (c)和(d)时刻的中子角分布Figure 7. Angular distributions of the accumulated neutrons at
$ t = 25{T_0} $ (a), (b) and$ t = 50{T_0} $ (c), (d) in the cases of different rotation direction of electric fields$ {{{E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase$ \Delta \phi $ . -
[1] 鲍杰, 陈永浩, 张显鹏, 等 2019 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[2] 夏江帆, 张杰 2000 物理 29 270Google Scholar
Xia J F, Zhang J 2000 Physics 29 270Google Scholar
[3] Alvarez J, Fernández-Tobias J, Mima K, Nakai S, Kar S, Kato Y, Perlado J M 2014 Physics Procedia 60 29Google Scholar
[4] Chen S N, Negoita F, Spohr K, d’Humières E, Pomerantz I, Fuchs J 2019 Matter Radiat. Extremes 4 054402Google Scholar
[5] Günther M M, Rosmej O N, Tavana P, Gyrdymov M, Skobliakov A, Kantsyrev A, Zähter S, Borisenko N G, Pukhov A, Andreev N E 2022 Nat. Commun. 13 170Google Scholar
[6] Zimmer M, Scheuren S, Kleinschmidt A, Mitura N, Tebartz A, Schaumann G, Abel T, Ebert T, Hesse M, Zähter Ş, Vogel S C, Merle O, Ahlers R J, Duarte Pinto S, Peschke M, Kröll T, Bagnoud V, Rödel C, Roth M 2022 Nat. Commun. 13 1173Google Scholar
[7] Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar
[8] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar
[9] Ren G, Yan J, Liu J, Lan K, Chen Y H, Huo W Y, Fan Z, Zhang X, Zheng J, Chen Z, Jiang W, Chen L, Tang Q, Yuan Z, Wang F, Jiang S, Ding Y, Zhang W, He X T 2017 Phys. Rev. Lett. 118 165001Google Scholar
[10] Curtis A, Calvi C, Tinsley J, Hollinger R, Kaymak V, Pukhov A, Wang S, Rockwood A, Wang Y, Shlyaptsev V N, Rocca J J 2018 Nat. Commun. 9 1077Google Scholar
[11] Labaune C, Baccou C, Depierreux S, Goyon C, Loisel G, Yahia V, Rafelski J 2013 Nat. Commun. 4 2506Google Scholar
[12] Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489Google Scholar
[13] Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Lu X M, Jiang Y H, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2009 Phys. Rev. A 80 051201Google Scholar
[14] Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M, Favalli A, Fernandez J, Gautier D, Geissel M, Haight R, Hamilton C E, Hegelich B M, Johnson R P, Merrill F, Schaumann G, Schoenberg K, Schollmeier M, Shimada T, Taddeucci T, Tybo J L, Wagner F, Wender S A, Wilde C H, Wurden G A 2013 Phys. Rev. Lett. 110 044802Google Scholar
[15] Mirfayzi S R, Alejo A, Ahmed H, Raspino D, Ansell S, Wilson L A, Armstrong C, Butler N M H, Clarke R J, Higginson A, Kelleher J, Murphy C D, Notley M, Rusby D R, Schooneveld E, Borghesi M, McKenna P, Rhodes N J, Neely D, Brenner C M, Kar S 2017 Appl. Phys. Lett. 111 044101Google Scholar
[16] Jiang X R, Shao F Q, Zou D B, Yu M Y, Hu L X, Guo X Y, Huang T W, Zhang H, Wu S Z, Zhang G B, Yu T P, Yin Y, Zhuo H B, Zhou C T 2020 Nucl. Fusion 60 076019Google Scholar
[17] 崔波, 张智猛, 戴曾海, 齐伟, 邓志刚, 黄华, 贺书凯, 王为武, 滕建, 张博, 刘红杰, 陈家斌, 肖云青, 吴笛, 马文君, 洪伟, 粟敬钦, 周维民, 谷渝秋 2021 强激光与粒子束 33 123Google Scholar
Cui B, Zhang Z M, Dai Z H, Qi W, Deng Z G, Huang H, He S K, Wang W W, Teng J, Zhang B, Liu H J, Chen J B, Xiao Y Q, Wu D , Ma W J, Hong W, Su J Q, Zhou W M, Gu Y Q 2021 High Power Laser Part. Beams 33 123Google Scholar
[18] Shkolnikov P L, Kaplan A E, Pukhov A, Meyer-ter-Vehn J 1997 Appl. Phys. Lett. 71 3471
[19] Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar
[20] Arikawa Y, Utsugi M, Alessio M, Nagai T, Abe Y, Kojima S, Sakata S, Inoue H, Fujioka S, Zhang Z, Chen H, Park J, Williams J, Morita T, Sakawa Y, Nakata Y, Kawanaka J, Jitsuno T, Sarukura N, Miyanaga N, Nakai M, Shiraga H, Nishimura H, Azechi H 2015 Plasma Fusion Res 10 2404003Google Scholar
[21] Jiao X J, Shaw J M, Wang T, Wang X M, Tsai H, Poth P, Pomerantz I, Labun L A, Toncian T, Downer M C, Hegelich B M 2017 Matter Radiat. Extremes 2 296Google Scholar
[22] Feng J, Fu C, Li Y, Zhang X, Wang J, Li D, Zhu C, Tan J, Mirzaie M, Zhang Z, Chen L 2020 High Energy Density Phys. 36 100753Google Scholar
[23] Jiang X R, Zou D B, Zhao Z J, Hu L X, Han P, Yu J Q, Yu T P, Yin Y, Shao F Q 2021 Phys. Rev. Appl. 15 034032Google Scholar
[24] Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103
[25] Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar
[26] Shen B F, Meyer-ter-Vehn J 2001 Phys. Plasmas 8 1003Google Scholar
[27] Zhang X M, Shen B F 2006 J. Plasma Phys. 72 635Google Scholar
[28] Macchi A 2006 Appl. Phys. B 82 337Google Scholar
[29] Hu L X, Yu T P, Shao F Q, Zhu Q J, Yin Y, Ma Y Y 2015 Phys. Plasmas 22 123104Google Scholar
[30] Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002Google Scholar
[31] Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar
[32] Wan Y, Pai C H, Zhang C J, Li F, Wu Y P, Hua J F, Lu W, Gu Y Q, Silva L O, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 234801Google Scholar
[33] Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar
[34] Wu D, Sheng Z M, Yu W, Fritzsche S, He X T 2021 AIP Advances 11 075003Google Scholar
[35] Deng H X, Sha R, Hu L X, Jiang X R, Zhao N, Zou D B, Yu T P, Shao F Q 2022 Plasma Phys. Controlled Fusion 64 085004Google Scholar
[36] Toupin C, Lefebvre E, Bonnaud G 2001 Phys. Plasmas 8 1011Google Scholar
[37] Liskien H, Paulsen A 1973 At. Data Nucl. Data Tables 11 569Google Scholar
[38] Macchi A, Cattani F, Liseykina T V, Cornolti F 2005 Phys. Rev. Lett. 94 165003Google Scholar
[39] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar
[40] Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M, Cary J R 2008 Phys. Rev. Lett. 101 164802Google Scholar
[41] Qiao B, Kar S, Geissler M, Gibbon P, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 108 115002
[42] Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar
[43] Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X H, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006Google Scholar
[44] Palmer C A J, Schreiber J, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Spindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002Google Scholar
[45] Zhang X M, Shen B F, Ji L L, Wang W P, Xu J C, Yu Y H, Wang X F 2011 Phys. Plasmas 18 073101Google Scholar
[46] Sgattoni A, Sinigardi S, Macchi A 2014 Appl. Phys. Lett. 15 084105Google Scholar
[47] Sgattoni A, Sinigardi S, Fedeli L, Pegoraro F, Macchi A 2015 Phys. Rev. E 91 013106Google Scholar
Catalog
Metrics
- Abstract views: 3569
- PDF Downloads: 128
- Cited By: 0