Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of influence of Si on γ phase in Inconel 718 alloy

Liu Zhi-Cheng Zhou Jie Chen Fan Peng Biao Peng Wen-Yi Zhang Ai-Sheng Deng Xiao-Hua Luo Xian-Zhi Liu Ri-Xin Liu De-Wu Huang Yu Yan Jun

Citation:

First-principles study of influence of Si on γ phase in Inconel 718 alloy

Liu Zhi-Cheng, Zhou Jie, Chen Fan, Peng Biao, Peng Wen-Yi, Zhang Ai-Sheng, Deng Xiao-Hua, Luo Xian-Zhi, Liu Ri-Xin, Liu De-Wu, Huang Yu, Yan Jun
PDF
HTML
Get Citation
  • Inconel 718 (IN 718) is the most widely used nickel-based high-temperature alloy today. It is widely adopted in important fields such as aerospace, energy and chemicals, and is also one of the few high-temperature alloys, of which some can be fabricated by using additive manufacturing. There is a lack of research on the effect of Si on the structure and properties of IN 718 alloy on a microscopic scale. In this paper, the effect of Si doping on the γ phase in IN 718 alloy is investigated by first-principles calculations through using the CASTEP package. The lattice constants, total energy, defect formation energy, formation enthalpy, cohesive energy, density of states, and electron density difference of the γ phase are calculated before and after Si doping, and population analysis is performed. The calculation of the lattice constant reveals that the doping of Si atoms expands the cell volume of the γ phase supercell, which contributes to a certain solution strengthening effect, and is conducive to the improvement of the hardness of the alloy. The energy and electronic structure calculations show that the Si atoms prefer to occupy the Ni atomic positions in the γ phase. The number of valence electrons between the atoms, the distribution of the charge density, and the strength of the bonds between the atoms also change with Si doping, thus modifying the interaction of the atoms within the γ phase, reducing the stability of the γ phase, and favouring the precipitation of the second phase. Besides, uniform and dense IN 718 coatings with low-coat Si doping are successfully fabricated by using plasma cladding. The experimental results demonstrate that Si doping has no significant effect on the type of matrix structure of IN 718 coatings, but causes a slight expansion of the lattice of the alloy, which is consistent with the calculation result. The addition of Si can result in a transformation of the alloy coating from columnar crystal to equiaxed crystal, refining the grain size of the alloy, while reducing the volume fraction of the γ phase and increasing the volume fraction of the second phase. Moreover, the addition of Si exacerbates the segregation of Nb and Cr elements in the IN 718 coatings.
      Corresponding author: Peng Wen-Yi, wenyi.peng@163.com
    • Funds: Project supported by the Key Research and Development Program of Jiangxi Province of China (Grant No. 20212BBE53043), the College Students Innovation and Entrepreneurship Training Project of Jiangxi Province, China (Grant No. S202110403003), and the Jiangxi Province Postgraduate Innovation Project, China (Grant No. YC2022-s155).
    [1]

    Pollock T M, Tin S 2006 J. Propuls. Power. 22 361Google Scholar

    [2]

    Hao L Y, Wen X Z, Lei X W, Yao W J, Wang N 2022 J. Alloys Compd. 920 165996Google Scholar

    [3]

    Pollock T M 2016 Nat. Mater. 15 809Google Scholar

    [4]

    Nnaji R N, Bodude M A, Osoba L O, Fayomi O S I, Ochulor F E 2019 Int. J. Adv. Manuf. Tech. 106 1149

    [5]

    Hosseini E, Popovich V A 2019 Addit. Manuf. 30 100877

    [6]

    Greene G A, Finfrock C C 2001 Oxid. Met. 55 505Google Scholar

    [7]

    Qiao Z, Li C, Zhang H, Liang H, Liu Y, Zhang Y 2020 Int. J. Min. Met. Mater. 27 1123Google Scholar

    [8]

    Fu S H, Dong J X, Zhang M C, Xie X S 2009 Mater. Sci. Eng. A. 499 215Google Scholar

    [9]

    赵文超, 周杰, 彭文屹, 危翔, 邓晓华, 章爱生, 于思琪, 孙祖祥, 余飞翔, 高安澜 2022 表面技术 51 103Google Scholar

    Zhao W C, Zhou J, Peng W Y, Wei X, Deng X H, Zhang A S, Yu S Q, Sun Z X, Yu F X, Gao A L 2022 Surf. Technol. 51 103Google Scholar

    [10]

    陆富刚 2019 硕士学位论文(北京: 北京交通大学)

    Lu F G 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University

    [11]

    Jia Q, Gu D 2014 Opt. Laser. Technol. 62 161Google Scholar

    [12]

    Tunthawiroon P, Li Y, Tang N, Koizumi Y, Chiba A 2015 Corros. Sci. 95 88Google Scholar

    [13]

    Zhang Y L, Li J, Zhang Y Y, Kang D N 2020 J. Alloy. Compd. 827 154131Google Scholar

    [14]

    Wang A, Li Y, Fan C, Yang K, Li D, Zhao X, Shi C 1994 Scripta Metal. Mater. 31 1695Google Scholar

    [15]

    孙文儒, 郭守仁, 卢德忠, 胡壮麒 1996 航空材料学报 2 7

    Sun W R, Guo S R, Lu D Z, Hu Z Q 1996 J. Aeronaut. Mater. 2 7

    [16]

    Ma M, Han A, Zhang Z, Lian Y, Zhao C, Zhang J 2021 Corros. Sci. 185 109417Google Scholar

    [17]

    Huang D, Lu J, Zhuang Y, Tian C, Li Y 2019 Corros. Sci. 158 108088Google Scholar

    [18]

    李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军 2022 金属学报 58 241Google Scholar

    Li Y M, Zhang Y Y, Zhao W, Zhou S R, Liu H J 2022 Acta. Metall. Sin. 58 241Google Scholar

    [19]

    张聪 2021 硕士学位论文(昆明: 昆明理工大学)

    Zhang C 2021 M. S. Thesis (Kunming: Kunming University of Science and Technology

    [20]

    Ghosh G, Asta M 2005 Acta. Mater. 53 3225Google Scholar

    [21]

    Van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [22]

    张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇 2017 材料导报 31 146Google Scholar

    Zhang X Y, Zheng B J, Guo B, Wu Z, Wang W Q, Wang Y 2017 Mater. Rev. 31 146Google Scholar

  • 图 1  计算用晶体模型 (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi

    Figure 1.  Crystal model for calculation: (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi.

    图 2  Si掺杂前后体系的态密度图 (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi

    Figure 2.  Density of state of systems before and after Si doping: (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi.

    图 3  Si掺杂前后体系的差分电荷密度图 (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi

    Figure 3.  Electron density difference of systems before and after Si doping: (a) Ni19Fe6Cr6Nb; (b) Ni18Fe6Cr6NbSi.

    图 4  Si掺杂前后IN 718涂层的XRD图谱

    Figure 4.  XRD patterns of IN 718 alloy before and after Si doping.

    图 5  Si掺杂前后合金微观组织图片 (a) IN 718; (b) 2Si-IN 718

    Figure 5.  Microstructure of alloy before and after Si doping: (a) IN 718; (b) 2Si-IN 718.

    表 1  超晶胞模型的平衡晶格常数及晶胞体积

    Table 1.  Equilibrium lattice constant and unit cell volume of supercell model.

    System Site a/nm b/nm c/nm α/(°) β/(°) γ/(°) V/nm3
    Ni19Fe6Cr6Nb 0.71345 0.72715 0.70223 90.000 90.000 90.000 0.3643
    Ni18Fe6Cr6NbSi Ni Site 0.71915 0.71859 0.71627 90.000 90.000 90.000 0.3701
    Ni19Fe5Cr6NbSi Fe Site 0.73543 0.73499 0.68475 90.000 90.000 90.314 0.3702
    Ni19Fe6Cr5NbSi Cr Site 0.70478 0.73256 0.70599 89.592 89.991 90.003 0.3645
    Ni19Fe6Cr6Si Nb Site 6.99468 7.26214 7.01313 90.000 90.000 90.001 0.3562
    DownLoad: CSV

    表 2  体系的总能量、缺陷形成能、形成热与结合能

    Table 2.  Total energy, defect formation energy, formation enthalpy and cohesive energy of systems.

    System Site Ef/eV H/(eV·atom–1) E/(eV·atom–1) Etotal/eV
    Ni19Fe6Cr6Nb –0.213127 –2.929875 –47447.72376
    Ni18Fe6Cr6NbSi Ni Site –1.339744 –0.256865 –2.915375 –46241.16350
    Ni19Fe5Cr6NbSi Fe Site –1.322440 –0.255194 –2.880194 –46754.74620
    Ni19Fe6Cr5NbSi Cr Site –1.226650 –0.252200 –2.892825 –45218.05041
    Ni19Fe6Cr6Si Nb Site –1.112683 –0.248639 –2.948639 –45961.73644
    DownLoad: CSV

    表 3  Si掺杂前后体系的原子布居数

    Table 3.  Atomic populations of systems before and after Si doping.

    System Species s p d f Total Charge
    Ni19Fe6Cr6Nb Ni 0.48 0.83 8.65 0 9.96 0.031
    Cr 2.58 6.77 4.96 0 14.32 –0.31
    Fe 0.50 0.70 6.72 0 7.92 0.08
    Nb 2.26 6.02 3.93 0 12.21 0.79
    Ni18Fe6Cr6NbSi Ni 0.49 0.83 8.65 0 9.97 0.02
    Cr 2.57 6.77 5.00 0 14.33 –0.33
    Fe 0.49 0.67 6.74 0 7.90 0.11
    Nb 2.26 6.04 3.94 0 12.24 0.76
    Si 1.21 2.61 0.00 0 3.83 0.17
    DownLoad: CSV

    表 4  Si掺杂前后体系键的布居数

    Table 4.  Overlapping populations of systems before and after Si doping.

    System Bond Population Length/nm
    Ni19Fe6Cr6Nb Fe—Ni 0.06 0.360847
    Cr—Fe –0.07 0.350106
    Cr—Ni –0.03 0.359244
    Ni—Ni –0.03 0.375966
    Fe—Nb –0.10 0.434654
    Ni—Nb –0.13 0.364001
    Cr—Nb –0.46 0.340342
    Cr—Cr –0.16 0.419928
    Fe—Fe –0.07 0.427230
    Ni18Fe6Cr6NbSi Fe—Ni 0.06 0.363710
    Cr—Fe –0.12 0.351112
    Cr—Ni –0.04 0.363071
    Ni—Ni 0.03 0.373913
    Fe—Nb –0.13 0.434897
    Ni—Nb –0.13 0.356309
    Cr—Nb –0.40 0.338983
    Cr—Cr –0.33 0.422106
    Fe—Fe –0.06 0.418588
    Ni—Si 0.02 0.386153
    DownLoad: CSV

    表 5  测量与折算的平衡晶格常数及晶胞体积

    Table 5.  Measured and converted equilibrium lattice constant and unit cell volume.

    System Measurement results Converted results α/(°) β/(°) γ/(°)
    a/nm b/nm c/nm V/nm3 a/nm b/nm c/nm V/nm3
    IN 718 0.36028 0.36021 0.35848 0.0465 0.72056 0.72042 0.71696 0.3721 90.000 90.000 90.000
    2Si-IN 718 0.35970 0.35960 0.36114 0.0467 0.71940 0.71920 0.72228 0.3737 90.000 90.000 90.000
    DownLoad: CSV

    表 6  Si掺杂前后合金涂层EDS结果(原子百分数)

    Table 6.  EDS results (atomic percent) of coating before and after Si doping.

    Coating Area Ni Fe Cr Nb Mo Ti Al Si
    IN 718 Matrix 40.85 38.46 17.42 0.53 1.14 1.28 0.32
    Second phase 36.08 28.42 14.33 6.89 2.89 1.46 0.56 9.33
    2Si-IN 718 Matrix 38.95 40.42 16.06 0.43 1.13 0.69 0.99 1.33
    Second phase 34.1 23.6 10.4 12.8 2.73 1.54 0.53 14.3
    DownLoad: CSV
    Baidu
  • [1]

    Pollock T M, Tin S 2006 J. Propuls. Power. 22 361Google Scholar

    [2]

    Hao L Y, Wen X Z, Lei X W, Yao W J, Wang N 2022 J. Alloys Compd. 920 165996Google Scholar

    [3]

    Pollock T M 2016 Nat. Mater. 15 809Google Scholar

    [4]

    Nnaji R N, Bodude M A, Osoba L O, Fayomi O S I, Ochulor F E 2019 Int. J. Adv. Manuf. Tech. 106 1149

    [5]

    Hosseini E, Popovich V A 2019 Addit. Manuf. 30 100877

    [6]

    Greene G A, Finfrock C C 2001 Oxid. Met. 55 505Google Scholar

    [7]

    Qiao Z, Li C, Zhang H, Liang H, Liu Y, Zhang Y 2020 Int. J. Min. Met. Mater. 27 1123Google Scholar

    [8]

    Fu S H, Dong J X, Zhang M C, Xie X S 2009 Mater. Sci. Eng. A. 499 215Google Scholar

    [9]

    赵文超, 周杰, 彭文屹, 危翔, 邓晓华, 章爱生, 于思琪, 孙祖祥, 余飞翔, 高安澜 2022 表面技术 51 103Google Scholar

    Zhao W C, Zhou J, Peng W Y, Wei X, Deng X H, Zhang A S, Yu S Q, Sun Z X, Yu F X, Gao A L 2022 Surf. Technol. 51 103Google Scholar

    [10]

    陆富刚 2019 硕士学位论文(北京: 北京交通大学)

    Lu F G 2019 M. S. Dissertation (Beijing: Beijing Jiaotong University

    [11]

    Jia Q, Gu D 2014 Opt. Laser. Technol. 62 161Google Scholar

    [12]

    Tunthawiroon P, Li Y, Tang N, Koizumi Y, Chiba A 2015 Corros. Sci. 95 88Google Scholar

    [13]

    Zhang Y L, Li J, Zhang Y Y, Kang D N 2020 J. Alloy. Compd. 827 154131Google Scholar

    [14]

    Wang A, Li Y, Fan C, Yang K, Li D, Zhao X, Shi C 1994 Scripta Metal. Mater. 31 1695Google Scholar

    [15]

    孙文儒, 郭守仁, 卢德忠, 胡壮麒 1996 航空材料学报 2 7

    Sun W R, Guo S R, Lu D Z, Hu Z Q 1996 J. Aeronaut. Mater. 2 7

    [16]

    Ma M, Han A, Zhang Z, Lian Y, Zhao C, Zhang J 2021 Corros. Sci. 185 109417Google Scholar

    [17]

    Huang D, Lu J, Zhuang Y, Tian C, Li Y 2019 Corros. Sci. 158 108088Google Scholar

    [18]

    李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军 2022 金属学报 58 241Google Scholar

    Li Y M, Zhang Y Y, Zhao W, Zhou S R, Liu H J 2022 Acta. Metall. Sin. 58 241Google Scholar

    [19]

    张聪 2021 硕士学位论文(昆明: 昆明理工大学)

    Zhang C 2021 M. S. Thesis (Kunming: Kunming University of Science and Technology

    [20]

    Ghosh G, Asta M 2005 Acta. Mater. 53 3225Google Scholar

    [21]

    Van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar

    [22]

    张旭昀, 郑冰洁, 郭斌, 吴戆, 王文泉, 王勇 2017 材料导报 31 146Google Scholar

    Zhang X Y, Zheng B J, Guo B, Wu Z, Wang W Q, Wang Y 2017 Mater. Rev. 31 146Google Scholar

  • [1] Chen Tun, Cui Jie-Chao, Li Min, Chen Wen, Sun Zhi-Peng, Fu Bao-Qin, Hou Qing. First-principles study on effects of alloying elements Sn and Nb on phase stability of corrosion oxide films of zirconium alloys. Acta Physica Sinica, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [2] Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming. Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations. Acta Physica Sinica, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [3] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [4] Yan Shun-Tao, Jiang Zhen-Yi. First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy. Acta Physica Sinica, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [5] Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei. First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys. Acta Physica Sinica, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [6] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [7] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [8] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [9] Ma Lei, Wang Xu, Shang Jia-Xiang. Effect of Pd in NiTi on the martensitic transformation temperatures and hysteresis: a first-principles study. Acta Physica Sinica, 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [10] Fan Kai-Min, Yang Li, Sun Qing-Qiang, Dai Yun-Ya, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles study on elastic properties of hexagonal phase ErAx (A=H, He). Acta Physica Sinica, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [11] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [12] Zhang Xue-Jun, Zhang Guang-Fu, Jin Hui-Xia, Zhu Liang-Di, Liu Qing-Ju. First-principles study on anatase TiO2 photocatalyst codoped with nitrogen and cobalt. Acta Physica Sinica, 2013, 62(1): 017102. doi: 10.7498/aps.62.017102
    [13] Zheng Shu-Kai, Wu Guo-Hao, Liu Lei. First-principles calculations of P-doped anatase TiO2. Acta Physica Sinica, 2013, 62(4): 043102. doi: 10.7498/aps.62.043102
    [14] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [15] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhao Chun-Wang, Zhang Bing. First-principles study on the electronic structures and absorption spectra of Sm-N codoped anatase TiO2. Acta Physica Sinica, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [16] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhang Bing. First-principles study on the doped concentration effect on electron lifespan and absorption spectrum of Eu-doping anatase TiO2. Acta Physica Sinica, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [17] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [18] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [19] Zhu Jian-Xin, Li Yong-Hua, Meng Fan-Ling, Liu Chang-Sheng, Zheng Wei-Tao, Wang Yu-Ming. A first principles investigation on NiTi alloy. Acta Physica Sinica, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
Metrics
  • Abstract views:  2962
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2023
  • Accepted Date:  09 June 2023
  • Available Online:  13 July 2023
  • Published Online:  20 September 2023

/

返回文章
返回
Baidu
map