Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain

Yuan Xiao-Juan

Citation:

Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain

Yuan Xiao-Juan
PDF
HTML
Get Citation
  • It is of fundamental importance to know the dynamics of quantum spin systems immersed in external magnetic fields. In this work, the dynamical properties of one-dimensional quantum Ising model with trimodal random transverse and longitudinal magnetic fields are investigated by the recursion method. The spin correlation function $C\left( t \right) = \overline {\left\langle {\sigma _j^x\left( t \right)\sigma _j^x\left( 0 \right)} \right\rangle } $ and the corresponding spectral density $\varPhi \left( \omega \right) = \displaystyle\int_{ - \infty }^{ + \infty } {{\rm{d}}t{{\rm{e}}^{{\rm{i}}\omega t}}C\left( t \right)}$ are calculated. The model Hamiltonian can be written as$ H = - \dfrac{1}{2}J\displaystyle\sum\limits_i^N {\sigma _i^x\sigma _{i + 1}^x} - \dfrac{1}{2}\displaystyle\sum\limits_i^N {{B_{iz}}\sigma _i^z} - \dfrac{1}{2}\sum\limits_i^N {{B_{ix}}\sigma _i^x} $,where $\sigma _i^\alpha \left( {\alpha = x,y,z} \right)$ are Pauli matrices at site $ i $, $J$is the nearest-neighbor exchange coupling. $ {B_{iz}} $ and $ {B_{ix}} $ denote the transverse and longitudinal magnetic field, respectively. They satisfy the following trimodal distribution,$ \rho \left( {{B_{iz}}} \right) = p\delta ({B_{iz}} - {B_p}) + q\delta ({B_{iz}} - {B_q}) + r\delta ({B_{iz}}) $,$ \rho \left( {{B_{ix}}} \right) = p\delta ({B_{ix}} - {B_p}) + q\delta ({B_{ix}} - {B_q}) + r\delta ({B_{ix}}). $The value intervals of the coefficients $p$, $q$ and $r$ are all [0,1], and the coefficients satisfy the constraint condition $ p + q + r = 1 $.For the case of trimodal random $ {B_{iz}} $ (consider $ {B_{ix}} \equiv 0 $ for simplicity), the exchange couplings are assumed to be $J \equiv 1$ to fix the energy scale, and the reference values are set as follows: $ {B_p} = 0.5 < J $ and $ {B_q} = 1.5 > J $. The coefficient $r$ can be considered as the proportion of non-magnetic impurities. When $r = 0$, the trimodal distribution reduces into the bimodal distribution. The dynamics of the system exhibits a crossover from the central-peak behavior to the collective-mode behavior as $q$ increases, which is consistent with the value reported previously. As $r$ increases, the crossover between different dynamical behaviors changes obviously (e.g. the crossover from central-peak to double-peak when $r = 0.2$), and the presence of non-magnetic impurities favors low-frequency response. Owing to the competition between the non-magnetic impurities and transverse magnetic field, the system tends to exhibit multi-peak behavior in most cases, e.g. $r = 0.4$, 0.6 or 0.8. However, the multi-peak behavior disappears when $r \to 1$. That is because the system's response to the transverse field is limited when the proportion of non-magnetic impurities is large enough. Interestingly, when the parameters satisfy $ q{B_q} = p{B_p} $, the central-peak behavior can be maintained. What makes sense is that the conclusion is universal.For the case of trimodal random $ {B_{ix}} $, the coefficient $r$ no longer represents the proportion of non-magnetic impurities when $ {B_{ix}} $ and $ {B_{iz}} $ ($ {B_{iz}} \equiv 1 $) coexist here. In the case of weak exchange coupling, the effect of longitudinal magnetic field on spin dynamics is obvious, so $J \equiv 0.5$ is set here. The reference values are set below: $ {B_p} = 0.5 \lt {B_{iz}} $ and $ {B_q} = 1.5 \gt {B_{iz}} $. When $r$ is small ($r = 0$, 0.2 or 0.4), the system undergoes a crossover from the collective-mode behavior to the double-peak behavior as $q$ increases. However, the low-frequency responses gradually disappear, while the high-frequency responses are maintained as $r$ increases. Take the case of $ r = 0.8 $ for example, the system only presents a collective-mode behavior. The results indicate that increasing $r$ is no longer conducive to the low-frequency response, which is contrary to the case of trimodal random $ {B_{iz}} $. The $r$ branch only regulates the intensity of the trimodal random $ {B_{ix}} $. Our results indicate that using trimodal random magnetic field to manipulate the spin dynamics of the Ising system may be a new try.
      Corresponding author: Yuan Xiao-Juan, yuanxiaojuan@163.com
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MA073), the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J18KB104), and the Young Doctoral Support Program of Qilu Normal University, China (Grant No. QBJH19-0006).
    [1]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432Google Scholar

    [2]

    Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X, Sun X F 2012 Phys. Rev. B 85 134412Google Scholar

    [3]

    Cui Y, Zou H, Xi N, He Z, Yang Y X, Shu L, Zhang G H, Hu Z, Chen T, Yu R, Wu J and Yu W 2019 Phys. Rev. Lett. 123 067203Google Scholar

    [4]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307Google Scholar

    [5]

    Dmitriev D V, Krivnov V Y 2004 Phys. Rev. B 70 144414Google Scholar

    [6]

    Neto M A, De Sousa J R 2013 Physica A 392 1Google Scholar

    [7]

    Corrêa Silva E V, Skea J E F, Rojas O, De Souza S M, Thomaz M T 2008 Physica A 387 5117Google Scholar

    [8]

    Do Nascimento D A, Neto M A, De Sousa J R, Pacobahyba J T 2012 J. Magn. Magn. Mater. 324 2429Google Scholar

    [9]

    Do Nascimento D A, Pacobahyba J T, Neto M A, Salmon O D R, Plascak J A 2017 Physica A 474 224Google Scholar

    [10]

    Senthil T 1998 Phys. Rev. B 57 8375Google Scholar

    [11]

    Liu Z Q, Jiang S R, Kong X M, Xu Y L 2017 Physica A 473 536Google Scholar

    [12]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [13]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404Google Scholar

    [14]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [15]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [16]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [17]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119Google Scholar

    [18]

    Crokidakis N, Nobre F D 2008 J. Phys. Condens. Matter 20 145211Google Scholar

    [19]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [20]

    Hadjiagapiou I A 2011 Physica A 390 2229Google Scholar

    [21]

    Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965Google Scholar

    [22]

    Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112Google Scholar

    [23]

    Kaufman M, Klunzinger P E, Khurana A 1986 Phys. Rev. B 34 4766Google Scholar

    [24]

    Saxena V K 1987 Phys. Rev. B 35 2055Google Scholar

    [25]

    Hadjiagapiou I A, Velonakis I N 2019 Physica A 534 122065Google Scholar

    [26]

    Mattis D C 1985 Phys. Rev. Lett. 55 3009Google Scholar

    [27]

    Sebastianes R M, Saxena V K 1987 Phys. Rev. B 35 2058Google Scholar

    [28]

    Fogedby H C 1978 J. Phys. C Solid State Phys. 11 2801Google Scholar

    [29]

    Kopeć T K, Usadel K D, Büttner G 1989 Phys. Rev. B 39 12418Google Scholar

    [30]

    Ovchinnikov A A, Dmitriev D V, Krivnov V Y, Cheranovskii V O 2003 Phys. Rev. B 68 214406Google Scholar

    [31]

    Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279Google Scholar

    [32]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)

    [33]

    Mezei F, Murani A P 1979 J. Magn. Magn. Mater. 14 211Google Scholar

    [34]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [35]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [36]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [37]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [38]

    袁晓娟, 王辉, 赵邦宇, 赵敬芬, 明静, 耿延雷, 张凯煜 2021 70 197501Google Scholar

    Yuan X J, Wang H, Zhao B Y, Zhao J F, Ming J, Geng Y L, Zhang K Y 2021 Acta Phys. Sin. 70 197501Google Scholar

  • 图 1  (a), (b) $ r \equiv 0 $时的自旋关联函数$C\left( t \right)$及相应的谱密度$ \varPhi \left( \omega \right) $; (c), (d) $ r = 0.2 $时的$C\left( t \right)$$ \varPhi \left( \omega \right) $. 三模分布中的参数$ {B_p} = 0.5 $, $ {B_q} = 1.5 $

    Figure 1.  The spin autocorrelation function $C\left( t \right)$ and corresponding spectral density $ \varPhi \left( \omega \right) $ for $ r \equiv 0 $ are given in graphs (a) and (b), and for $ r = 0.2 $ are given in graphs (c) and (d), respectively. The parameters $ {B_p} $ and $ {B_q} $ in the tri-modal distribution are 0.5 and 1.5, respectively.

    图 2  (a)—(d)分别为系数$ r = 0.4 $, 0.6, 0.8, 0.96时的谱密度, 三模分布中的参数$ {B_p} = 0.5 $, $ {B_q} = 1.5 $

    Figure 2.  The spectral densities for $ r = 0.4 $, 0.6, 0.8 and 0.96 are given in (a)–(d), respectively. The parameters $ {B_p} $ and $ {B_q} $ in the tri-modal distribution are 0.5 and 1.5, respectively.

    图 3  随机选取几组参数, 给出不同参数下的谱密度 (a) $ r = 0.5 $, $ {B_q} = 1.6 $, $ {B_p} = 0.4 $; (b) $ r = 0.5 $, $ {B_q} = 2.0 $, $ {B_p} = 0.5 $; (c) $ r = 0.6 $, $ {B_q} = 1.2 $, $ {B_p} = 0.4 $; (d) $ r = 0.6 $, $ {B_q} = 1.8 $, $ {B_p} = 0.6 $. (a)—(d) 中红色虚线对应的参数满足$ q{B_q} = p{B_p} $

    Figure 3.  The spectral densities for several groups of parameters: (a) $ r = 0.5 $, $ {B_q} = 1.6 $, $ {B_p} = 0.4 $; (b) $ r = 0.5 $, $ {B_q} = 2.0 $, $ {B_p} = 0.5 $; (c) $ r = 0.6 $, $ {B_q} = 1.2 $, $ {B_p} = 0.4 $; (d) $ r = 0.6 $,$ {B_q} = 1.8 $, $ {B_p} = 0.6 $. The parameters corresponding to the red dashed lines in graphs (a)–(d) satisfy $ q{B_q} = p{B_p} $.

    图 4  (a)图3(c)所给参数下的连分式系数${\varDelta _1}, {\varDelta _2}, \cdots , {\varDelta _9}$, 仅给出了$ q \ne 0 $$ p \ne 0 $时的结果, 参数取值为$ r = 0.6 $, $ {B_q} = 1.2 $, $ {B_p} = 0.4 $; (b)—(d)$ q = 0.1 $, 0.2, 0.3时连分式系数线性拟合的结果

    Figure 4.  (a) The first nine recurrents ${\varDelta _1}, {\varDelta _2}, \cdots , {\varDelta _9}$ for the parameters $ r = 0.6 $, $ {B_q} = 1.2 $ and $ {B_p} = 0.4 $ given in Fig. 3(c); (b)–(d) the linear fit results of the recurrents for $ q = 0.1 $, 0.2 and 0.3, respectively.

    图 5  三模型随机纵场蜕化为双模型随机纵场时的谱密度和自旋关联函数(插图), 三模分布系数$ r = 0 $, 参数$ {B_p} = 0.5 $, $ {B_q} = 1.5 $

    Figure 5.  Spectral density and spin autocorrelation function for trimodal-type random longitudinal magnetic field when $ r = 0 $. The inset is the corresponding result of $C\left( t \right)$. The parameters $ {B_p} $ and $ {B_q} $ in the tri-modal distribution are 0.5 and 1.5, respectively.

    图 6  随机纵场满足三模分布时的谱密度 (a)—(d)系数$ r = 0.2 $, 0.4, 0.6, 0.8. 三模分布中的参数$ {B_p} = 0.5 $, $ {B_q} = 1.5 $

    Figure 6.  Spectral densities for tri-modal-type random longitudinal magnetic field: (a)–(d)$ r = 0.2 $, 0.4, 0.6, 0.8. The parameters $ {B_p} $ and $ {B_q} $ in the tri-modal distribution are 0.5 and 1.5, respectively.

    Baidu
  • [1]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432Google Scholar

    [2]

    Zhao Z Y, Liu X G, He Z Z, Wang X M, Fan C, Ke W P, Li Q J, Chen L M, Zhao X, Sun X F 2012 Phys. Rev. B 85 134412Google Scholar

    [3]

    Cui Y, Zou H, Xi N, He Z, Yang Y X, Shu L, Zhang G H, Hu Z, Chen T, Yu R, Wu J and Yu W 2019 Phys. Rev. Lett. 123 067203Google Scholar

    [4]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307Google Scholar

    [5]

    Dmitriev D V, Krivnov V Y 2004 Phys. Rev. B 70 144414Google Scholar

    [6]

    Neto M A, De Sousa J R 2013 Physica A 392 1Google Scholar

    [7]

    Corrêa Silva E V, Skea J E F, Rojas O, De Souza S M, Thomaz M T 2008 Physica A 387 5117Google Scholar

    [8]

    Do Nascimento D A, Neto M A, De Sousa J R, Pacobahyba J T 2012 J. Magn. Magn. Mater. 324 2429Google Scholar

    [9]

    Do Nascimento D A, Pacobahyba J T, Neto M A, Salmon O D R, Plascak J A 2017 Physica A 474 224Google Scholar

    [10]

    Senthil T 1998 Phys. Rev. B 57 8375Google Scholar

    [11]

    Liu Z Q, Jiang S R, Kong X M, Xu Y L 2017 Physica A 473 536Google Scholar

    [12]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [13]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404Google Scholar

    [14]

    Da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121

    [15]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [16]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [17]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119Google Scholar

    [18]

    Crokidakis N, Nobre F D 2008 J. Phys. Condens. Matter 20 145211Google Scholar

    [19]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [20]

    Hadjiagapiou I A 2011 Physica A 390 2229Google Scholar

    [21]

    Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965Google Scholar

    [22]

    Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112Google Scholar

    [23]

    Kaufman M, Klunzinger P E, Khurana A 1986 Phys. Rev. B 34 4766Google Scholar

    [24]

    Saxena V K 1987 Phys. Rev. B 35 2055Google Scholar

    [25]

    Hadjiagapiou I A, Velonakis I N 2019 Physica A 534 122065Google Scholar

    [26]

    Mattis D C 1985 Phys. Rev. Lett. 55 3009Google Scholar

    [27]

    Sebastianes R M, Saxena V K 1987 Phys. Rev. B 35 2058Google Scholar

    [28]

    Fogedby H C 1978 J. Phys. C Solid State Phys. 11 2801Google Scholar

    [29]

    Kopeć T K, Usadel K D, Büttner G 1989 Phys. Rev. B 39 12418Google Scholar

    [30]

    Ovchinnikov A A, Dmitriev D V, Krivnov V Y, Cheranovskii V O 2003 Phys. Rev. B 68 214406Google Scholar

    [31]

    Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279Google Scholar

    [32]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag)

    [33]

    Mezei F, Murani A P 1979 J. Magn. Magn. Mater. 14 211Google Scholar

    [34]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [35]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [36]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [37]

    Florencio J, De Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [38]

    袁晓娟, 王辉, 赵邦宇, 赵敬芬, 明静, 耿延雷, 张凯煜 2021 70 197501Google Scholar

    Yuan X J, Wang H, Zhao B Y, Zhao J F, Ming J, Geng Y L, Zhang K Y 2021 Acta Phys. Sin. 70 197501Google Scholar

  • [1] Sun Zhen-Hui, Hu Li-Zhen, Xu Yu-Liang, Kong Xiang-Mu. Quantum coherence and mutual information of mixed spin-(1/2, 5/2) Ising-XXZ model on quasi-one-dimensional lattices. Acta Physica Sinica, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [2] Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu. Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model. Acta Physica Sinica, 2021, 70(19): 197501. doi: 10.7498/aps.70.20210631
    [3] Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru. Opinion formation model with co-evolution of individual behavior and social environment. Acta Physica Sinica, 2019, 68(11): 118902. doi: 10.7498/aps.68.20182254
    [4] Yang Bo, Fan Min, Liu Wen-Qi, Chen Xiao-Song. Phase transition properties for the spatial public goods game with self-questioning mechanism. Acta Physica Sinica, 2017, 66(19): 196401. doi: 10.7498/aps.66.196401
    [5] Li Yan. Theory of density-density correlations between ultracold Bosons released from optical lattices. Acta Physica Sinica, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [6] Liu Yan, Bao Jing-Dong. Generation and application of non-ergodic noise. Acta Physica Sinica, 2014, 63(24): 240503. doi: 10.7498/aps.63.240503
    [7] Luo Zhi, Yang Guan-Qiong, Di Zeng-Ru. Opinion formation on the social networks with geographic structure. Acta Physica Sinica, 2012, 61(19): 190509. doi: 10.7498/aps.61.190509
    [8] Yuan Xiao-Juan, Zhao Bang-Yu, Chen Shu-Xia, Kong Xiang-Mu. Effects of next-nearest-neighbor interactions on the dynamics of random quantum Ising model. Acta Physica Sinica, 2010, 59(3): 1499-1506. doi: 10.7498/aps.59.1499
    [9] Zhou Li-Dan, Su Jing-Qin, Li Ping, Liu Lan-Qin, Wang Wen-Yi, Wang Fang, Mo Lei, Cheng Wen-Yong, Zhang Xiao-Min. Power spectral density method of defects on optical elements of high-power laser facility and its equivalent algorithm. Acta Physica Sinica, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [10] Sun Chun-Feng. The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [11] Wang Yan-Shen. Boundary correlation functions of the six-vertex model with open boundary. Acta Physica Sinica, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
    [12] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [13] Chen Xiao-Yu. . Acta Physica Sinica, 1995, 44(9): 1484-1488. doi: 10.7498/aps.44.1484
    [14] JI DA-REN, ZHANG JIAN-BO. MONTE CARLO SIMULATIONS OF THE ISING MODEL ON THREE-DIMENSIONAL RANDOM LATTICE USING THE CLUSTER ALGORITHM. Acta Physica Sinica, 1993, 42(11): 1741-1746. doi: 10.7498/aps.42.1741
    [15] ZHANG GUO-MIN, YANG CHUAN-ZHANG. MONTE CARLO STUDY OF THE ORDER OF PHASE TRANSITION OF A MULTISPIN INTERACTIONS ISING MODEL. Acta Physica Sinica, 1993, 42(10): 1680-1683. doi: 10.7498/aps.42.1680
    [16] Teng Bao-hua. GREEN'S FUNCTION APPROACH TO 3-DIMENSIONAL ISING MODEL. Acta Physica Sinica, 1991, 40(5): 826-832. doi: 10.7498/aps.40.826
    [17] SU ZI-MIN, PENG SHAO-QI. DETERMINATION OF THE GAP STATE DISTRIBUTION IN a-Si:H BY THE METHOD OF INTERNAL PHOTOEMISSION TRANSIENT CURRENT TEMPERATURE SPECTROSCOPY. Acta Physica Sinica, 1986, 35(6): 731-740. doi: 10.7498/aps.35.731
    [18] SHI HE, HAO BAI-LIN. CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅲ)——THE POSSIBILITY OF IMPROVING THE NUMERICAL RESULTS WITH HYPERCOMPLEX NUMBER SYSTEMS. Acta Physica Sinica, 1981, 30(9): 1225-1233. doi: 10.7498/aps.30.1225
    [19] SHI HE, HAO BAI-LIN. CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅳ)——THE APPROXIMATE INTERPOLATION FORMULA FOR THE PARTITION FUNCTION. Acta Physica Sinica, 1981, 30(9): 1234-1241. doi: 10.7498/aps.30.1234
    [20] SHI HE, HAO BAI-LIN. A CLOSED-FORM APPROXIMATION FOR THE 3-DIMENSIONAL ISING MODEL (Ⅱ)——LIMITATIONS OF THE Q-APPROXIMATION. Acta Physica Sinica, 1980, 29(12): 1564-1569. doi: 10.7498/aps.29.1564
Metrics
  • Abstract views:  3012
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2023
  • Accepted Date:  11 February 2023
  • Available Online:  17 February 2023
  • Published Online:  20 April 2023

/

返回文章
返回
Baidu
map